{"title":"In vivo cancer modeling using mouse models.","authors":"Prafulla Chandra Tiwari, Manju J Chaudhary, Rishi Pal, Rajendra Nath","doi":"10.1016/bs.mcb.2025.02.013","DOIUrl":null,"url":null,"abstract":"<p><p>Mouse models have contributed to a better understanding of cancer biology and the development of new treatments. This chapter elaborates on the various types of mouse models applied in cancer research, such as xenograft, syngeneic, and humanized models, together with the state-of-the-art techniques of genetic engineering involved in their generation. We described the methodologies of tumor induction and engraftment procedures and these model applications in drug development, efficacy testing, and studies on immuno-oncology. Further, the chapter covers ethical considerations and regulatory requirements on the use of animals in research, essentially aligned with international guidelines and those in India. The chapter illustrates that mouse models will not become outdated in preclinical testing any time soon but continue to be relevant for the study of tumor biology and the tumor microenvironment besides their use for investigating genetic and molecular pathways in cancer. Emerging technologies, such as CRISPR/Cas9 and organoid integration, are also highlighted for their work in improving the accuracy and translational potential of models. These developments combined with initiatives on collaborative and open science that enable the sharing of data and resources, hold great promise for the future of in vivo cancer modeling. The mouse models will continue to be one of the prime movers in advancing cancer research and formulating individual medication strategies that lead to improved patient outcomes through their integration of classical approaches with modern technologies.</p>","PeriodicalId":18437,"journal":{"name":"Methods in cell biology","volume":"198 ","pages":"221-250"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in cell biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mcb.2025.02.013","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/5 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Mouse models have contributed to a better understanding of cancer biology and the development of new treatments. This chapter elaborates on the various types of mouse models applied in cancer research, such as xenograft, syngeneic, and humanized models, together with the state-of-the-art techniques of genetic engineering involved in their generation. We described the methodologies of tumor induction and engraftment procedures and these model applications in drug development, efficacy testing, and studies on immuno-oncology. Further, the chapter covers ethical considerations and regulatory requirements on the use of animals in research, essentially aligned with international guidelines and those in India. The chapter illustrates that mouse models will not become outdated in preclinical testing any time soon but continue to be relevant for the study of tumor biology and the tumor microenvironment besides their use for investigating genetic and molecular pathways in cancer. Emerging technologies, such as CRISPR/Cas9 and organoid integration, are also highlighted for their work in improving the accuracy and translational potential of models. These developments combined with initiatives on collaborative and open science that enable the sharing of data and resources, hold great promise for the future of in vivo cancer modeling. The mouse models will continue to be one of the prime movers in advancing cancer research and formulating individual medication strategies that lead to improved patient outcomes through their integration of classical approaches with modern technologies.
期刊介绍:
For over fifty years, Methods in Cell Biology has helped researchers answer the question "What method should I use to study this cell biology problem?" Edited by leaders in the field, each thematic volume provides proven, state-of-art techniques, along with relevant historical background and theory, to aid researchers in efficient design and effective implementation of experimental methodologies. Over its many years of publication, Methods in Cell Biology has built up a deep library of biological methods to study model developmental organisms, organelles and cell systems, as well as comprehensive coverage of microscopy and other analytical approaches.