A Refined Prognostic Model for Postoperative Overall Survival in Hepatocellular Carcinoma Based on CODEX-Based Multiproteomics and Radiomics.

IF 3.4 3区 医学 Q2 ONCOLOGY
Journal of Hepatocellular Carcinoma Pub Date : 2025-09-26 eCollection Date: 2025-01-01 DOI:10.2147/JHC.S527066
Yuxian Wu, Jianmin Wu, Shaofeng Duan, Dong Liu, Wanmin Liu, Kairong Song, Juan Zhang, Yayuan Feng, Sisi Zhang, Yiping Liu, Hui Dong, Hao Zhang, Lei Chen, Ningyang Jia
{"title":"A Refined Prognostic Model for Postoperative Overall Survival in Hepatocellular Carcinoma Based on CODEX-Based Multiproteomics and Radiomics.","authors":"Yuxian Wu, Jianmin Wu, Shaofeng Duan, Dong Liu, Wanmin Liu, Kairong Song, Juan Zhang, Yayuan Feng, Sisi Zhang, Yiping Liu, Hui Dong, Hao Zhang, Lei Chen, Ningyang Jia","doi":"10.2147/JHC.S527066","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study aimed to develop a predictive model for the prognosis of patients with hepatocellular carcinoma (HCC) after resection.</p><p><strong>Methods: </strong>Eighty-two HCC patients were randomly divided into a training cohort (n = 62) and a validation cohort (n = 20). Clinicopathological, multiproteomics features based on CO-Detection by Indexing (Codex), and radiomics features extracted from magnetic resonance imaging (MRI) were used to construct four models: clinicopathological model, radiomics model, proteomics model, and combined model. Model performance was evaluated using the C-index, calibration curves, receiver operating characteristic (ROC) curves, survival curves, and decision curve analysis (DCA).</p><p><strong>Results: </strong>The combined model, integrating clinicopathological, radiomics, and multi-proteomic features, demonstrated the best performance of overall survival (OS) prediction in both the training cohort (C-index = 0.821, 95% CI: 0.745-0.897) and validation cohort (C-index = 0.791, 95% CI: 0.628-0.954). The calibration curve showed high accuracy of the combined nomogram in predicting OS.</p><p><strong>Conclusion: </strong>This study innovatively integrates CODEX-based multiproteomics, radiomics, and clinicopathological features to construct a prognostic prediction model for HCC. The combined model demonstrates improved prognostic predictive efficacy compared with single-modality models. This approach establishes a theoretical foundation for personalized diagnosis and treatment. However, its clinical utility requires further validation through large-scale, multi-center studies.</p>","PeriodicalId":15906,"journal":{"name":"Journal of Hepatocellular Carcinoma","volume":"12 ","pages":"2169-2182"},"PeriodicalIF":3.4000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12482950/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hepatocellular Carcinoma","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/JHC.S527066","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: This study aimed to develop a predictive model for the prognosis of patients with hepatocellular carcinoma (HCC) after resection.

Methods: Eighty-two HCC patients were randomly divided into a training cohort (n = 62) and a validation cohort (n = 20). Clinicopathological, multiproteomics features based on CO-Detection by Indexing (Codex), and radiomics features extracted from magnetic resonance imaging (MRI) were used to construct four models: clinicopathological model, radiomics model, proteomics model, and combined model. Model performance was evaluated using the C-index, calibration curves, receiver operating characteristic (ROC) curves, survival curves, and decision curve analysis (DCA).

Results: The combined model, integrating clinicopathological, radiomics, and multi-proteomic features, demonstrated the best performance of overall survival (OS) prediction in both the training cohort (C-index = 0.821, 95% CI: 0.745-0.897) and validation cohort (C-index = 0.791, 95% CI: 0.628-0.954). The calibration curve showed high accuracy of the combined nomogram in predicting OS.

Conclusion: This study innovatively integrates CODEX-based multiproteomics, radiomics, and clinicopathological features to construct a prognostic prediction model for HCC. The combined model demonstrates improved prognostic predictive efficacy compared with single-modality models. This approach establishes a theoretical foundation for personalized diagnosis and treatment. However, its clinical utility requires further validation through large-scale, multi-center studies.

Abstract Image

Abstract Image

Abstract Image

基于codex的多蛋白质组学和放射组学的肝细胞癌术后总生存的精细预后模型。
目的:本研究旨在建立肝细胞癌(HCC)切除术后预后的预测模型。方法:82例HCC患者随机分为训练组(n = 62)和验证组(n = 20)。利用基于CO-Detection by Indexing (Codex)的临床病理、多蛋白质组学特征和磁共振成像(MRI)提取的放射组学特征构建临床病理模型、放射组学模型、蛋白质组学模型和联合模型。采用c指数、校正曲线、受试者工作特征(ROC)曲线、生存曲线和决策曲线分析(DCA)评价模型的性能。结果:综合临床病理、放射组学和多蛋白质组学特征的联合模型在训练组(C-index = 0.821, 95% CI: 0.745-0.897)和验证组(C-index = 0.791, 95% CI: 0.628-0.954)中均表现出最佳的总生存(OS)预测效果。校正曲线显示组合模态图预测OS的准确度较高。结论:本研究创新性地整合了基于codex的多蛋白质组学、放射组学和临床病理特征,构建了HCC的预后预测模型。与单模态模型相比,联合模型的预后预测效果更好。该方法为个性化诊断和治疗奠定了理论基础。然而,其临床应用需要通过大规模、多中心的研究进一步验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
2.40%
发文量
108
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信