{"title":"Physiological roles of phosphoinositides and inositol phosphates: Implications for metabolic dysfunction-associated steatotic liver disease.","authors":"Zhili Cheng, Magdalene K Montgomery","doi":"10.1042/CS20257631","DOIUrl":null,"url":null,"abstract":"<p><p>Phosphoinositides and inositol phosphates (IPs) are integral to numerous cellular processes, including membrane trafficking, signal transduction and calcium dynamics. These lipid-derived signalling mediators orchestrate the spatial and temporal regulation of many signalling cascades, largely through interactions with specific effector proteins. Recent studies have highlighted their critical roles in metabolic homeostasis and the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD). In this review, we examine the pathways important for phosphoinositide and IP synthesis, and the physiological functions of myo-inositol, d-chiro-inositol and phosphatidylinositol, as well as their phosphorylated inositol counterparts, including phosphoinositides (PI(3)P, PI(4)P, PI(3,4)P2, PI(3,5)P2, PI(4,5)P2, PI(3,4,5)P3) and IPs (inositol 1,4,5-trisphosphate (IP3), inositol 1,3,4,5-tetrakisphosphate (IP4), inositol pentakisphosphate (IP5), inositol hexaphosphate (IP6 or phytic acid) and inositol pyrophosphates (IP7 and IP8)), with an emphasis on their emerging significance in hepatic metabolism. We explore how perturbations in IP metabolism contribute to the development and progression of MASLD, liver inflammation, fibrosis and hepatic insulin resistance. We further highlight recent studies utilizing genetic models and pharmacological interventions that underscore the therapeutic potential of targeting inositol metabolism in MASLD. This review synthesizes current knowledge to provide a comprehensive understanding of how phosphoinositides and IPs integrate metabolic cues and contribute to hepatic pathophysiology, identifying knowledge gaps and offering novel insights for therapeutic innovation in the management of MASLD.</p>","PeriodicalId":10475,"journal":{"name":"Clinical science","volume":"139 19","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1042/CS20257631","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Phosphoinositides and inositol phosphates (IPs) are integral to numerous cellular processes, including membrane trafficking, signal transduction and calcium dynamics. These lipid-derived signalling mediators orchestrate the spatial and temporal regulation of many signalling cascades, largely through interactions with specific effector proteins. Recent studies have highlighted their critical roles in metabolic homeostasis and the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD). In this review, we examine the pathways important for phosphoinositide and IP synthesis, and the physiological functions of myo-inositol, d-chiro-inositol and phosphatidylinositol, as well as their phosphorylated inositol counterparts, including phosphoinositides (PI(3)P, PI(4)P, PI(3,4)P2, PI(3,5)P2, PI(4,5)P2, PI(3,4,5)P3) and IPs (inositol 1,4,5-trisphosphate (IP3), inositol 1,3,4,5-tetrakisphosphate (IP4), inositol pentakisphosphate (IP5), inositol hexaphosphate (IP6 or phytic acid) and inositol pyrophosphates (IP7 and IP8)), with an emphasis on their emerging significance in hepatic metabolism. We explore how perturbations in IP metabolism contribute to the development and progression of MASLD, liver inflammation, fibrosis and hepatic insulin resistance. We further highlight recent studies utilizing genetic models and pharmacological interventions that underscore the therapeutic potential of targeting inositol metabolism in MASLD. This review synthesizes current knowledge to provide a comprehensive understanding of how phosphoinositides and IPs integrate metabolic cues and contribute to hepatic pathophysiology, identifying knowledge gaps and offering novel insights for therapeutic innovation in the management of MASLD.
期刊介绍:
Translating molecular bioscience and experimental research into medical insights, Clinical Science offers multi-disciplinary coverage and clinical perspectives to advance human health.
Its international Editorial Board is charged with selecting peer-reviewed original papers of the highest scientific merit covering the broad spectrum of biomedical specialities including, although not exclusively:
Cardiovascular system
Cerebrovascular system
Gastrointestinal tract and liver
Genomic medicine
Infection and immunity
Inflammation
Oncology
Metabolism
Endocrinology and nutrition
Nephrology
Circulation
Respiratory system
Vascular biology
Molecular pathology.