Intermittent synchronization in non-weakly coupled piecewise-linear expanding map lattice: A geometric-combinatorial approach.

IF 3.2 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-10-01 DOI:10.1063/5.0251185
Junke Zhang, Yiqian Wang
{"title":"Intermittent synchronization in non-weakly coupled piecewise-linear expanding map lattice: A geometric-combinatorial approach.","authors":"Junke Zhang, Yiqian Wang","doi":"10.1063/5.0251185","DOIUrl":null,"url":null,"abstract":"<p><p>Coupled (chaotic) map lattices (CMLs) characterize the collective dynamics of a spatially distributed system whose local units are linked either locally or globally. Previous research on the dynamical behavior of CMLs, based primarily on the Perron-Frobenius operator framework, has focused mainly on the weakly coupled case. In this paper, we develop a novel geometric-combinatorial method to study the dynamical behavior of CMLs beyond the weak-coupling regime, specifically a two-node system with identical piecewise-linear expanding maps. We derive a necessary and sufficient condition for two facts: the uniqueness of the absolutely continuous invariant measures and the occurrence of intermittent synchronization-i.e., almost every orbit enters and leaves an arbitrarily small neighborhood of the diagonal infinitely often.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 10","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0251185","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Coupled (chaotic) map lattices (CMLs) characterize the collective dynamics of a spatially distributed system whose local units are linked either locally or globally. Previous research on the dynamical behavior of CMLs, based primarily on the Perron-Frobenius operator framework, has focused mainly on the weakly coupled case. In this paper, we develop a novel geometric-combinatorial method to study the dynamical behavior of CMLs beyond the weak-coupling regime, specifically a two-node system with identical piecewise-linear expanding maps. We derive a necessary and sufficient condition for two facts: the uniqueness of the absolutely continuous invariant measures and the occurrence of intermittent synchronization-i.e., almost every orbit enters and leaves an arbitrarily small neighborhood of the diagonal infinitely often.

非弱耦合分段线性扩展映射格中的间歇同步:一种几何组合方法。
耦合(混沌)映射格(cml)表征空间分布式系统的集体动力学,其局部单元是局部或全局连接的。以往关于cml动力学行为的研究主要基于Perron-Frobenius算子框架,主要集中在弱耦合情况下。在本文中,我们提出了一种新的几何组合方法来研究弱耦合状态下cml的动力学行为,特别是具有相同分段线性扩展映射的两节点系统。给出了绝对连续不变测度的唯一性和间歇同步的存在的充分必要条件。,几乎每个轨道都无限频繁地进入和离开对角线的任意小邻域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信