Stochastic bifurcation and safety basin study of nonlinear vibration systems in Li-doped graphene nanoplates with time delays.

IF 3.2 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-10-01 DOI:10.1063/5.0285335
Lu Cheng, Zhouchao Wei, Zaitang Huang, Tomasz Kapitaniak
{"title":"Stochastic bifurcation and safety basin study of nonlinear vibration systems in Li-doped graphene nanoplates with time delays.","authors":"Lu Cheng, Zhouchao Wei, Zaitang Huang, Tomasz Kapitaniak","doi":"10.1063/5.0285335","DOIUrl":null,"url":null,"abstract":"<p><p>From the perspective of nonlinear vibration systems in graphene nanoplates, chaos, safe basins, and stochastic bifurcations are three crucial indicators for assessing stability. This study analyzes the Li-doped graphene nanoplates' chaos in the Smale sense and its feasibility based on stochastic Melnikov theory, and verifies the control of noise, dual time delays, and time-delay feedback intensity. By combining stochastic dynamic theory with the simple cell mapping method, we conduct an in-depth analysis of the system's dynamic response and the evolution of stochastic safe basins, revealing the erosion mechanisms of safe basins under different parameters. Finally, topological data analysis is introduced to analyze stochastic bifurcations in the nonlinear vibration system of Li-doped graphene nanoplates, capturing more comprehensive stochastic P-bifurcation characteristics under diverse parameters. This provides theoretical support and strategic recommendations for chaos control and vibration stability optimization in Li-doped graphene nanoplate systems.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 10","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0285335","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

From the perspective of nonlinear vibration systems in graphene nanoplates, chaos, safe basins, and stochastic bifurcations are three crucial indicators for assessing stability. This study analyzes the Li-doped graphene nanoplates' chaos in the Smale sense and its feasibility based on stochastic Melnikov theory, and verifies the control of noise, dual time delays, and time-delay feedback intensity. By combining stochastic dynamic theory with the simple cell mapping method, we conduct an in-depth analysis of the system's dynamic response and the evolution of stochastic safe basins, revealing the erosion mechanisms of safe basins under different parameters. Finally, topological data analysis is introduced to analyze stochastic bifurcations in the nonlinear vibration system of Li-doped graphene nanoplates, capturing more comprehensive stochastic P-bifurcation characteristics under diverse parameters. This provides theoretical support and strategic recommendations for chaos control and vibration stability optimization in Li-doped graphene nanoplate systems.

掺锂石墨烯纳米板非线性振动系统的随机分岔与安全盆研究。
从石墨烯纳米片非线性振动系统的角度来看,混沌、安全盆地和随机分岔是评估稳定性的三个关键指标。本研究基于随机Melnikov理论分析了li掺杂石墨烯纳米片的小尺度混沌及其可行性,并验证了噪声、双时延和时延反馈强度的控制。将随机动力学理论与简单细胞映射方法相结合,深入分析了系统的动态响应和随机安全流域的演化,揭示了不同参数下安全流域的侵蚀机理。最后,引入拓扑数据分析方法对掺锂石墨烯纳米片非线性振动系统中的随机分岔进行了分析,获得了不同参数下更全面的随机p分岔特征。这为锂掺杂石墨烯纳米板系统的混沌控制和振动稳定性优化提供了理论支持和策略建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信