{"title":"Discovery and characterization of a novel HIF-2α agonist for the treatment of CKD-related renal anemia.","authors":"Shu-Qing Chu, Yi-Jie Chen, Rui-Rui Yang, Dan Teng, Gui-Zhen Zhou, Ying-Ying Zhang, Bu-Ying Niu, Jia-Hang Xu, Ke-Xin Lin, Xin-Yu Yang, Xu-Tong Li, Ming-Yue Zheng, Su-Lin Zhang","doi":"10.1038/s41401-025-01657-w","DOIUrl":null,"url":null,"abstract":"<p><p>Hypoxia-inducible factor 2-alpha (HIF-2α), a critical transcription factor, forms a heterodimer with aryl hydrocarbon receptor nuclear translocator (ARNT) to drive the transcription of erythropoietin (EPO), a key regulator of erythropoiesis. Activation of this pathway plays a pivotal role in the treatment of anemia. By discovered structure-based virtual screening and pharmacological assays, we herein discovered an amide thiazole AT-1 that bound to HIF-2α with a K<sub>D</sub> of 2.63 μM, and enhanced the stability of the HIF-2α-ARNT heterodimer. Molecular docking and site-directed mutagenesis analysis revealed the critical roles of His293 and Tyr307 in the binding of AT-1 to HIF-2α. Pharmacological studies showed that AT-1 (10, 20, 40 μM) dose-dependently enhanced both the transcription and secretion of EPO in 786-O and Hep3B cells. In zebrafish (Danio rerio), AT-1 (10 or 50 μM) exhibited favorable safety profiles and, when combined with the prolyl hydroxylase (PHD) inhibitor Molidustat (10 μM), effectively mitigated doxorubicin-induced anemia. In adenine-induced chronic kidney disease (CKD) mouse model, combined administration of AT-1 (50 mg·kg<sup>-1</sup>·d<sup>-1</sup>, i.p.) and Molidustat (10 mg·kg<sup>-1</sup>·d<sup>-1</sup>, i.p.) for 15 days produced stronger effects on increasing EPO levels and alleviating anemia than Molidustat alone, further supporting the therapeutic potential of AT-1 in CKD-related anemia.</p>","PeriodicalId":6942,"journal":{"name":"Acta Pharmacologica Sinica","volume":" ","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmacologica Sinica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41401-025-01657-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Hypoxia-inducible factor 2-alpha (HIF-2α), a critical transcription factor, forms a heterodimer with aryl hydrocarbon receptor nuclear translocator (ARNT) to drive the transcription of erythropoietin (EPO), a key regulator of erythropoiesis. Activation of this pathway plays a pivotal role in the treatment of anemia. By discovered structure-based virtual screening and pharmacological assays, we herein discovered an amide thiazole AT-1 that bound to HIF-2α with a KD of 2.63 μM, and enhanced the stability of the HIF-2α-ARNT heterodimer. Molecular docking and site-directed mutagenesis analysis revealed the critical roles of His293 and Tyr307 in the binding of AT-1 to HIF-2α. Pharmacological studies showed that AT-1 (10, 20, 40 μM) dose-dependently enhanced both the transcription and secretion of EPO in 786-O and Hep3B cells. In zebrafish (Danio rerio), AT-1 (10 or 50 μM) exhibited favorable safety profiles and, when combined with the prolyl hydroxylase (PHD) inhibitor Molidustat (10 μM), effectively mitigated doxorubicin-induced anemia. In adenine-induced chronic kidney disease (CKD) mouse model, combined administration of AT-1 (50 mg·kg-1·d-1, i.p.) and Molidustat (10 mg·kg-1·d-1, i.p.) for 15 days produced stronger effects on increasing EPO levels and alleviating anemia than Molidustat alone, further supporting the therapeutic potential of AT-1 in CKD-related anemia.
期刊介绍:
APS (Acta Pharmacologica Sinica) welcomes submissions from diverse areas of pharmacology and the life sciences. While we encourage contributions across a broad spectrum, topics of particular interest include, but are not limited to: anticancer pharmacology, cardiovascular and pulmonary pharmacology, clinical pharmacology, drug discovery, gastrointestinal and hepatic pharmacology, genitourinary, renal, and endocrine pharmacology, immunopharmacology and inflammation, molecular and cellular pharmacology, neuropharmacology, pharmaceutics, and pharmacokinetics. Join us in sharing your research and insights in pharmacology and the life sciences.