Vitrification and Cold Crystallization of a One-Dimensional Perovskite-like Compound Enabled by Reorganizable Coordination Bonds and a Configurationally Restricted Cation.

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zi-Yi Du, Miao Xie, Wei-Yu Hu, Qing Wang, Wenbing Yuan, Chun Wu, Haiming Liu, Takayoshi Nakamura, Chun-Ting He, Rui-Kang Huang, Xiao-Ming Chen
{"title":"Vitrification and Cold Crystallization of a One-Dimensional Perovskite-like Compound Enabled by Reorganizable Coordination Bonds and a Configurationally Restricted Cation.","authors":"Zi-Yi Du, Miao Xie, Wei-Yu Hu, Qing Wang, Wenbing Yuan, Chun Wu, Haiming Liu, Takayoshi Nakamura, Chun-Ting He, Rui-Kang Huang, Xiao-Ming Chen","doi":"10.1021/jacs.5c12026","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding glass formation and transformation remains a fundamental challenge in materials science. Here, we report the first example of vitrification and multifactor-triggered cold crystallization in a one-dimensional (1D) perovskite-like coordination polymer, (4-methylmorpholinium)[Cd(SCN)<sub>3</sub>]. By introducing cleavable and reorganizable Cd-S/N coordination bonds, we enable glass formation via melt-quenching, a process previously unachievable in 1D perovskite-like compounds. Comprehensive structural and spectroscopic analyses as well as molecular dynamics simulations, especially in-depth solid-state NMR analysis, reveal that reversible coordination bond reorganization and the restricted configurational freedom of the methylmorpholinium cation drive the glass-crystal transition. Combined dynamic and isothermal DSC studies demonstrate that cold crystallization proceeds via instantaneous nucleation and 1D crystal growth, driven by the confined rearrangement of the 4-methylmorpholinium cation. These findings establish a new vitrification mechanism based on dynamic coordination bonds, providing molecular-level insight into phase transitions in low-dimensional hybrid organic-inorganic perovskites or perovskite-like compounds and offering new strategies for glass-forming hybrid materials.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":""},"PeriodicalIF":15.6000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c12026","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding glass formation and transformation remains a fundamental challenge in materials science. Here, we report the first example of vitrification and multifactor-triggered cold crystallization in a one-dimensional (1D) perovskite-like coordination polymer, (4-methylmorpholinium)[Cd(SCN)3]. By introducing cleavable and reorganizable Cd-S/N coordination bonds, we enable glass formation via melt-quenching, a process previously unachievable in 1D perovskite-like compounds. Comprehensive structural and spectroscopic analyses as well as molecular dynamics simulations, especially in-depth solid-state NMR analysis, reveal that reversible coordination bond reorganization and the restricted configurational freedom of the methylmorpholinium cation drive the glass-crystal transition. Combined dynamic and isothermal DSC studies demonstrate that cold crystallization proceeds via instantaneous nucleation and 1D crystal growth, driven by the confined rearrangement of the 4-methylmorpholinium cation. These findings establish a new vitrification mechanism based on dynamic coordination bonds, providing molecular-level insight into phase transitions in low-dimensional hybrid organic-inorganic perovskites or perovskite-like compounds and offering new strategies for glass-forming hybrid materials.

由可重组配位键和构型限制阳离子实现的一维类钙钛矿化合物的玻璃化和冷结晶。
了解玻璃的形成和转变仍然是材料科学的一个基本挑战。在这里,我们报道了第一个玻璃化和多因素触发的一维(1D)钙钛矿类配位聚合物[Cd(SCN)3]冷结晶的例子。通过引入可切割和可重组的Cd-S/N配位键,我们可以通过熔融淬火形成玻璃,这是以前一维钙钛矿类化合物无法实现的过程。综合的结构和光谱分析以及分子动力学模拟,特别是深入的固体核磁共振分析表明,可逆配位键重组和甲基态啉阳离子的受限构型自由驱动了玻璃晶体的转变。动态和等温DSC研究表明,在4-甲基态啉阳离子的限制性重排驱动下,冷结晶通过瞬时成核和一维晶体生长进行。这些发现建立了一种新的基于动态配位键的玻璃化机制,为低维有机-无机钙钛矿或类钙钛矿杂化化合物的相变提供了分子水平的见解,并为玻璃化杂化材料的形成提供了新的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信