Upper Bound for the Grand Canonical Free Energy of the Bose Gas in the Gross–Pitaevskii Limit for General Interaction Potentials

IF 1.3 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Marco Caporaletti, Andreas Deuchert
{"title":"Upper Bound for the Grand Canonical Free Energy of the Bose Gas in the Gross–Pitaevskii Limit for General Interaction Potentials","authors":"Marco Caporaletti,&nbsp;Andreas Deuchert","doi":"10.1007/s00023-024-01505-3","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a homogeneous Bose gas in the Gross–Pitaevskii limit at temperatures that are comparable to the critical temperature for Bose–Einstein condensation. Recently, an upper bound for the grand canonical free energy was proved in Boccato et al. (SIAM J Math Anal 56(2):2611–2660, 2024) capturing two novel contributions. First, the free energy of the interacting condensate is given in terms of an effective theory describing the probability distribution of the number of condensed particles. Second, the free energy of the thermally excited particles equals that of a temperature-dependent Bogoliubov Hamiltonian. We extend this result to a more general class of interaction potentials, including interactions with a hard core. Our proof follows a different approach than the one in Boccato et al. (SIAM J Math Anal 56(2):2611–2660, 2024): We model microscopic correlations between the particles by a Jastrow factor and exploit a cancellation in the computation of the energy that emerges due to the different length scales in the system.</p></div>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"26 10","pages":"3767 - 3827"},"PeriodicalIF":1.3000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00023-024-01505-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00023-024-01505-3","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a homogeneous Bose gas in the Gross–Pitaevskii limit at temperatures that are comparable to the critical temperature for Bose–Einstein condensation. Recently, an upper bound for the grand canonical free energy was proved in Boccato et al. (SIAM J Math Anal 56(2):2611–2660, 2024) capturing two novel contributions. First, the free energy of the interacting condensate is given in terms of an effective theory describing the probability distribution of the number of condensed particles. Second, the free energy of the thermally excited particles equals that of a temperature-dependent Bogoliubov Hamiltonian. We extend this result to a more general class of interaction potentials, including interactions with a hard core. Our proof follows a different approach than the one in Boccato et al. (SIAM J Math Anal 56(2):2611–2660, 2024): We model microscopic correlations between the particles by a Jastrow factor and exploit a cancellation in the computation of the energy that emerges due to the different length scales in the system.

一般相互作用势的Gross-Pitaevskii极限下玻色气体的大正则自由能的上界
我们考虑在Gross-Pitaevskii极限下的均匀玻色气体,其温度与玻色-爱因斯坦凝聚的临界温度相当。最近,Boccato et al. (SIAM J Math, 56(2): 2611-2660, 2024)证明了大正则自由能的上界,获得了两个新的贡献。首先,用描述凝聚态粒子数目概率分布的有效理论给出了相互作用凝聚态的自由能。其次,热激发粒子的自由能等于与温度相关的波格留博夫哈密顿量的自由能。我们将这一结果推广到更一般的相互作用势,包括与硬核的相互作用。我们的证明采用了与Boccato等人不同的方法(SIAM J Math Anal 56(2):2611 - 2660,2024):我们通过Jastrow因子模拟粒子之间的微观相关性,并在计算由于系统中不同长度尺度而出现的能量时利用抵消。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annales Henri Poincaré
Annales Henri Poincaré 物理-物理:粒子与场物理
CiteScore
3.00
自引率
6.70%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society. The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信