Trace-Elements Partitioning between Phases in the System P2O5–CaO–Na2O ± (SiO2 + Al2O3)–F–H2O–CO2 at 500 MPa

IF 1.1 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
I. T. Rass, A. G. Polozov, K. I. Shmulovich
{"title":"Trace-Elements Partitioning between Phases in the System P2O5–CaO–Na2O ± (SiO2 + Al2O3)–F–H2O–CO2 at 500 MPa","authors":"I. T. Rass,&nbsp;A. G. Polozov,&nbsp;K. I. Shmulovich","doi":"10.1134/S0869591125700146","DOIUrl":null,"url":null,"abstract":"<p>The distribution of Ti, Zr, Nb, La, Sm, Yb, and Y was experimentally studied between phosphate−carbonate melts, silicate-bearing melts (with the addition of silicate to the starting mixtures) and minerals: apatite Ca<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>F, fluorite CaF<sub>2</sub>, and nacaphite (Na<sub>2</sub>Ca(PO<sub>4</sub>)F). Four series of experimental runs were carried out in an internally heated gas pressure vessels (IHPV) at a pressure of 500 MPa, using four types of starting mixtures: (1) Ca<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>F) + CaCO<sub>3</sub> + Na<sub>2</sub>CO<sub>3</sub> ± NaAlSiO<sub>4</sub> at 1100–750°C; (2) Ca<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>F + CaCO<sub>3</sub> + NaF ± NaAlSiO<sub>4</sub> at 950°C; (3) NaPO<sub>3</sub> + CaCO<sub>3</sub> + CaF<sub>2</sub> + NaF ± NaAlSiO<sub>4</sub> at 900°C; and (4) NaPO<sub>3</sub> + CaCO<sub>3</sub> + NaF ± NaAlSiO<sub>4</sub> at 900°C with variable proportions of P<sub>2</sub>O<sub>5</sub>, CaO, Na<sub>2</sub>O, and SiO<sub>2</sub>. H<sub>2</sub>O (~5 mL), H<sub>2</sub>C<sub>2</sub>O<sub>4</sub> (~1.5 mg), and a 3-mg mixture of trace-element oxides were added in equal mass proportions to all starting compositions. The experimental products were analyzed by electron probe microanalysis. Depending on the CaO and P<sub>2</sub>O<sub>5</sub> proportion<sub>,</sub> the silicate-free starting mixtures in three former series yielded two types of quenched melts: (i) calcite-rich melt with 20 mol % Na<sub>2</sub>O at a lower P<sub>2</sub>O<sub>5</sub> content and (ii) sodic carbonate−phosphate melt with a low CaO concentration at higher P<sub>2</sub>O<sub>5</sub> content and with up to 20 wt % CaO. The solubility of ZrO<sub>2</sub>, TiO<sub>2</sub>, and Nb<sub>2</sub>O<sub>5</sub> in the calcite-rich quenched melts at 750°C is low and limited by the crystallization of Zr, Ti, and Nb oxides. At 950°C, these oxides did not form, and the concentrations of ZrO<sub>2</sub>, TiO<sub>2</sub>, and Nb<sub>2</sub>O<sub>5</sub> increased in the melts with increasing P<sub>2</sub>O<sub>5</sub>/(P<sub>2</sub>O<sub>5</sub> + CaO) ratio. REE concentrations (in wt %) in the apatite and coexisting Ca-rich carbonate melt increased with increasing P<sub>2</sub>O<sub>5</sub> content from 0.2 to 0.9 for La<sub>2</sub>O<sub>3</sub>, from 0.25 to 0.75 for Sm<sub>2</sub>O<sub>3</sub>, from 0.2 to 0.6 for Yb<sub>2</sub>O<sub>3</sub>, and from 0.2 to 0.4 for Y<sub>2</sub>O<sub>3</sub>, reaching 0.5 in a single run. In the runs of series IV, the nepheline-bearing starting mixtures yielded two immiscible melts: (1) SiO<sub>2</sub>-free sodic phosphate-rich melt with apatite and nepheline in run IV-7 and (2) aluminosilicate melt. Run IV-8 produced two immiscible melts, sodic−phosphate and silicate, with a P<sub>2</sub>O<sub>5</sub> content in the silicate melt no higher than 25 wt %. Concentrations of TiO<sub>2</sub>, ZrO<sub>2</sub>, and Nb<sub>2</sub>O<sub>5</sub> are much higher in the phosphate-rich melt than in the silicate melt with a lower phosphorus content. Their partition coefficients in run IV-7 are <i>d</i>TiO<sub>2</sub> = 13.9, <i>d</i>ZrO<sub>2</sub> = 2.46, and <i>d</i>Nb<sub>2</sub>O<sub>5</sub> = 3.01, and lower, but these coefficients are still higher than in run IV-8: <i>d</i>TiO<sub>2</sub> = 1.29, <i>d</i>ZrO<sub>2</sub> = 2.04, <i>d</i>Nb<sub>2</sub>O<sub>5</sub> = 1.24.</p>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"33 5","pages":"470 - 488"},"PeriodicalIF":1.1000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petrology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S0869591125700146","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The distribution of Ti, Zr, Nb, La, Sm, Yb, and Y was experimentally studied between phosphate−carbonate melts, silicate-bearing melts (with the addition of silicate to the starting mixtures) and minerals: apatite Ca5(PO4)3F, fluorite CaF2, and nacaphite (Na2Ca(PO4)F). Four series of experimental runs were carried out in an internally heated gas pressure vessels (IHPV) at a pressure of 500 MPa, using four types of starting mixtures: (1) Ca5(PO4)3F) + CaCO3 + Na2CO3 ± NaAlSiO4 at 1100–750°C; (2) Ca5(PO4)3F + CaCO3 + NaF ± NaAlSiO4 at 950°C; (3) NaPO3 + CaCO3 + CaF2 + NaF ± NaAlSiO4 at 900°C; and (4) NaPO3 + CaCO3 + NaF ± NaAlSiO4 at 900°C with variable proportions of P2O5, CaO, Na2O, and SiO2. H2O (~5 mL), H2C2O4 (~1.5 mg), and a 3-mg mixture of trace-element oxides were added in equal mass proportions to all starting compositions. The experimental products were analyzed by electron probe microanalysis. Depending on the CaO and P2O5 proportion, the silicate-free starting mixtures in three former series yielded two types of quenched melts: (i) calcite-rich melt with 20 mol % Na2O at a lower P2O5 content and (ii) sodic carbonate−phosphate melt with a low CaO concentration at higher P2O5 content and with up to 20 wt % CaO. The solubility of ZrO2, TiO2, and Nb2O5 in the calcite-rich quenched melts at 750°C is low and limited by the crystallization of Zr, Ti, and Nb oxides. At 950°C, these oxides did not form, and the concentrations of ZrO2, TiO2, and Nb2O5 increased in the melts with increasing P2O5/(P2O5 + CaO) ratio. REE concentrations (in wt %) in the apatite and coexisting Ca-rich carbonate melt increased with increasing P2O5 content from 0.2 to 0.9 for La2O3, from 0.25 to 0.75 for Sm2O3, from 0.2 to 0.6 for Yb2O3, and from 0.2 to 0.4 for Y2O3, reaching 0.5 in a single run. In the runs of series IV, the nepheline-bearing starting mixtures yielded two immiscible melts: (1) SiO2-free sodic phosphate-rich melt with apatite and nepheline in run IV-7 and (2) aluminosilicate melt. Run IV-8 produced two immiscible melts, sodic−phosphate and silicate, with a P2O5 content in the silicate melt no higher than 25 wt %. Concentrations of TiO2, ZrO2, and Nb2O5 are much higher in the phosphate-rich melt than in the silicate melt with a lower phosphorus content. Their partition coefficients in run IV-7 are dTiO2 = 13.9, dZrO2 = 2.46, and dNb2O5 = 3.01, and lower, but these coefficients are still higher than in run IV-8: dTiO2 = 1.29, dZrO2 = 2.04, dNb2O5 = 1.24.

Abstract Image

500 MPa下P2O5-CaO-Na2O±(SiO2 + Al2O3) -F-H2O-CO2体系中微量元素的相间分配
实验研究了Ti、Zr、Nb、La、Sm、Yb和Y在磷酸盐-碳酸盐岩熔体、含硅酸盐熔体(在起始混合物中加入硅酸盐)和磷灰石Ca5(PO4)3F、萤石CaF2和碳酸石墨(Na2Ca(PO4)F)之间的分布。在500 MPa的内加热气体压力容器(IHPV)中,使用四种启动混合物进行了四组实验:(1)Ca5(PO4)3F) + CaCO3 + Na2CO3±NaAlSiO4,温度为1100 ~ 750℃;(2) 950℃Ca5(PO4)3F + CaCO3 + NaF±NaAlSiO4;(3) 900℃时naapo3 + CaCO3 + CaF2 + NaF±NaAlSiO4;(4) NaPO3 + CaCO3 + NaF±NaAlSiO4(900℃,P2O5、CaO、Na2O和SiO2的比例变化)。将H2O (~ 5ml)、H2C2O4 (~1.5 mg)和3mg的微量元素氧化物混合物以相同的质量比例加入到所有起始组合物中。对实验产物进行了电子探针微量分析。根据CaO和P2O5的比例,前三个系列的无硅酸盐启动混合物产生了两种类型的淬火熔体:(i)富方解石熔体,含20 mol % Na2O, P2O5含量较低;(ii)碳酸钠-磷酸盐熔体,含低CaO浓度,P2O5含量较高,CaO含量高达20 wt %。750℃时,ZrO2、TiO2和Nb2O5在富方解石淬火熔体中的溶解度较低,且受Zr、Ti和Nb氧化物结晶的限制。在950℃时,这些氧化物不形成,熔体中ZrO2、TiO2和Nb2O5的浓度随着P2O5/(P2O5 + CaO)比的增加而增加。随着P2O5含量的增加,La2O3从0.2增加到0.9,Sm2O3从0.25增加到0.75,Yb2O3从0.2增加到0.6,Y2O3从0.2增加到0.4,单次运行达到0.5,磷灰石和富钙碳酸盐熔体中REE浓度(wt %)增加。在系列IV中,含霞石的起始混合物产生了两种不混溶的熔体:(1)IV-7中含磷灰石和霞石的无sio2富钠磷酸盐熔体和(2)铝硅酸盐熔体。Run IV-8生产了两种不混溶的熔体,钠磷酸盐和硅酸盐,硅酸盐熔体中P2O5的含量不高于25wt %。富磷酸盐熔体中TiO2、ZrO2和Nb2O5的浓度远高于低磷硅酸盐熔体。它们在IV-7次运行中的分配系数分别为dTiO2 = 13.9, dZrO2 = 2.46, dNb2O5 = 3.01,且较低,但仍高于IV-8次运行中的分配系数:dTiO2 = 1.29, dZrO2 = 2.04, dNb2O5 = 1.24。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Petrology
Petrology 地学-地球科学综合
CiteScore
2.40
自引率
20.00%
发文量
27
审稿时长
>12 weeks
期刊介绍: Petrology is a journal of magmatic, metamorphic, and experimental petrology, mineralogy, and geochemistry. The journal offers comprehensive information on all multidisciplinary aspects of theoretical, experimental, and applied petrology. By giving special consideration to studies on the petrography of different regions of the former Soviet Union, Petrology provides readers with a unique opportunity to refine their understanding of the geology of the vast territory of the Eurasian continent. The journal welcomes manuscripts from all countries in the English or Russian language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信