{"title":"Scaling DNA synthesis with a microchip-based massively parallel synthesis system.","authors":"Xiandi Zhang,Xiang'er Jiang,Yun Wang,Qinzhen Chen,Hao Jiang,Hu Zhang,Antoni Beltran,Weiya Yang,Tai Chen,Chenglong Liang,Ning Cheng,Yun Huang,Guqiao Ding,Chengwang Xie,Nanfeng Gao,Juntao Liu,Wei Xu,Jinlei Huang,Dong Cai,Lihao Zhu,Songjin Mo,Mengzhe Shen,Wenwei Zhang,Ben Lehner,Ming Ni,Jian Wang,Xun Xu,Yue Shen","doi":"10.1038/s41587-025-02844-0","DOIUrl":null,"url":null,"abstract":"Current high-throughput DNA synthesis technologies use intricate chip and microfluidic systems to produce large-scale synthetic oligonucleotides but with low concentration and limited compatibility for long DNA assembly. Here we report a massive-in-parallel synthesis system, with an 'identification-sorting-synthesis-recycling' iteration mechanism applied to microchips for high-throughput DNA synthesis. This approach increases DNA product concentration by four to six orders of magnitude and simplifies downstream processes for large-scale gene synthesis.","PeriodicalId":19084,"journal":{"name":"Nature biotechnology","volume":"21 1","pages":""},"PeriodicalIF":41.7000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41587-025-02844-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Current high-throughput DNA synthesis technologies use intricate chip and microfluidic systems to produce large-scale synthetic oligonucleotides but with low concentration and limited compatibility for long DNA assembly. Here we report a massive-in-parallel synthesis system, with an 'identification-sorting-synthesis-recycling' iteration mechanism applied to microchips for high-throughput DNA synthesis. This approach increases DNA product concentration by four to six orders of magnitude and simplifies downstream processes for large-scale gene synthesis.
期刊介绍:
Nature Biotechnology is a monthly journal that focuses on the science and business of biotechnology. It covers a wide range of topics including technology/methodology advancements in the biological, biomedical, agricultural, and environmental sciences. The journal also explores the commercial, political, ethical, legal, and societal aspects of this research.
The journal serves researchers by providing peer-reviewed research papers in the field of biotechnology. It also serves the business community by delivering news about research developments. This approach ensures that both the scientific and business communities are well-informed and able to stay up-to-date on the latest advancements and opportunities in the field.
Some key areas of interest in which the journal actively seeks research papers include molecular engineering of nucleic acids and proteins, molecular therapy, large-scale biology, computational biology, regenerative medicine, imaging technology, analytical biotechnology, applied immunology, food and agricultural biotechnology, and environmental biotechnology.
In summary, Nature Biotechnology is a comprehensive journal that covers both the scientific and business aspects of biotechnology. It strives to provide researchers with valuable research papers and news while also delivering important scientific advancements to the business community.