{"title":"Backpropagation scaling in parameterised quantum circuits","authors":"Joseph Bowles, David Wierichs, Chae-Yeun Park","doi":"10.22331/q-2025-10-02-1873","DOIUrl":null,"url":null,"abstract":"The discovery of the backpropagation algorithm ranks among one of the most important moments in the history of machine learning, and has made possible the training of large-scale neural networks through its ability to compute gradients at roughly the same computational cost as model evaluation. Despite its importance, a similar backpropagation-like scaling for gradient evaluation of parameterised quantum circuits has remained elusive. Currently, the most popular method requires sampling from a number of circuits that scales with the number of circuit parameters, making training of large-scale quantum circuits prohibitively expensive in practice. Here we address this problem by introducing a class of structured circuits that are not known to be classically simulable and admit gradient estimation with significantly fewer circuits. In the simplest case – for which the parameters feed into commuting quantum gates – these circuits allow for fast estimation of the gradient, higher order partial derivatives and the Fisher information matrix. Moreover, specific families of parameterised circuits exist for which the scaling of gradient estimation is in line with classical backpropagation, and can thus be trained at scale. In a toy classification problem on 16 qubits, such circuits show competitive performance with other methods, while reducing the training cost by about two orders of magnitude.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"8 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-10-02-1873","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The discovery of the backpropagation algorithm ranks among one of the most important moments in the history of machine learning, and has made possible the training of large-scale neural networks through its ability to compute gradients at roughly the same computational cost as model evaluation. Despite its importance, a similar backpropagation-like scaling for gradient evaluation of parameterised quantum circuits has remained elusive. Currently, the most popular method requires sampling from a number of circuits that scales with the number of circuit parameters, making training of large-scale quantum circuits prohibitively expensive in practice. Here we address this problem by introducing a class of structured circuits that are not known to be classically simulable and admit gradient estimation with significantly fewer circuits. In the simplest case – for which the parameters feed into commuting quantum gates – these circuits allow for fast estimation of the gradient, higher order partial derivatives and the Fisher information matrix. Moreover, specific families of parameterised circuits exist for which the scaling of gradient estimation is in line with classical backpropagation, and can thus be trained at scale. In a toy classification problem on 16 qubits, such circuits show competitive performance with other methods, while reducing the training cost by about two orders of magnitude.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.