{"title":"Alternatively Spliced Citrate Synthase Supports Colorectal Cancer","authors":"Désirée Schatton, Christian Frezza","doi":"10.1158/0008-5472.can-25-3356","DOIUrl":null,"url":null,"abstract":"Metabolic changes are a major hallmark of cancer with the mitochondrial tricarboxylic acid (TCA) cycle playing a central role in this process. Remodeling of the TCA cycle occurs in cancer cells to sustain the increased anabolic and energetic demands required to grow, proliferate, and metastasize. Alternative splicing (AS) is increasingly recognized as a key regulator of cancer metabolism, yet its specific impact on TCA cycle enzymes remains unclear. In this issue of Cancer Research, Cheung and colleagues describe a novel splicing isoform of citrate synthase (CS), termed CS-ΔEx4, which is highly expressed in colorectal cancer. This CS-ΔEx4 isoform forms heterocomplexes with full-length CS, enhancing CS activity and promoting the metabolic reprogramming characteristic of malignancy. Overexpression of CS-ΔEx4 increases mitochondrial respiration and drives glycolytic carbon flux toward TCA intermediates, resulting in elevated levels of the metabolite 2-hydroxyglutarate. Mechanistically, this increase in 2-hydroxyglutarate, facilitated by increased activity of phosphoglycerate dehydrogenase, leads to epigenetic alterations that support oncogenic gene expression and tumor progression. Suppression of CS-ΔEx4 or pharmacologic inhibition of its activity reverts these metabolic and epigenetic changes, reducing cancer cell survival and metastatic potential. These findings establish a direct link between AS of a core metabolic enzyme and the emergence of cancer hallmarks, suggesting that targeting AS-derived variants like CS-ΔEx4 may represent a promising therapeutic strategy for colorectal cancer and potentially other malignancies in which such isoforms are expressed. See related article by Cheung et al., p. XX","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"109 1","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/0008-5472.can-25-3356","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Metabolic changes are a major hallmark of cancer with the mitochondrial tricarboxylic acid (TCA) cycle playing a central role in this process. Remodeling of the TCA cycle occurs in cancer cells to sustain the increased anabolic and energetic demands required to grow, proliferate, and metastasize. Alternative splicing (AS) is increasingly recognized as a key regulator of cancer metabolism, yet its specific impact on TCA cycle enzymes remains unclear. In this issue of Cancer Research, Cheung and colleagues describe a novel splicing isoform of citrate synthase (CS), termed CS-ΔEx4, which is highly expressed in colorectal cancer. This CS-ΔEx4 isoform forms heterocomplexes with full-length CS, enhancing CS activity and promoting the metabolic reprogramming characteristic of malignancy. Overexpression of CS-ΔEx4 increases mitochondrial respiration and drives glycolytic carbon flux toward TCA intermediates, resulting in elevated levels of the metabolite 2-hydroxyglutarate. Mechanistically, this increase in 2-hydroxyglutarate, facilitated by increased activity of phosphoglycerate dehydrogenase, leads to epigenetic alterations that support oncogenic gene expression and tumor progression. Suppression of CS-ΔEx4 or pharmacologic inhibition of its activity reverts these metabolic and epigenetic changes, reducing cancer cell survival and metastatic potential. These findings establish a direct link between AS of a core metabolic enzyme and the emergence of cancer hallmarks, suggesting that targeting AS-derived variants like CS-ΔEx4 may represent a promising therapeutic strategy for colorectal cancer and potentially other malignancies in which such isoforms are expressed. See related article by Cheung et al., p. XX
期刊介绍:
Cancer Research, published by the American Association for Cancer Research (AACR), is a journal that focuses on impactful original studies, reviews, and opinion pieces relevant to the broad cancer research community. Manuscripts that present conceptual or technological advances leading to insights into cancer biology are particularly sought after. The journal also places emphasis on convergence science, which involves bridging multiple distinct areas of cancer research.
With primary subsections including Cancer Biology, Cancer Immunology, Cancer Metabolism and Molecular Mechanisms, Translational Cancer Biology, Cancer Landscapes, and Convergence Science, Cancer Research has a comprehensive scope. It is published twice a month and has one volume per year, with a print ISSN of 0008-5472 and an online ISSN of 1538-7445.
Cancer Research is abstracted and/or indexed in various databases and platforms, including BIOSIS Previews (R) Database, MEDLINE, Current Contents/Life Sciences, Current Contents/Clinical Medicine, Science Citation Index, Scopus, and Web of Science.