Doubly Robust Estimation and Semiparametric Efficiency in Generalized Partially Linear Models with Missing Outcomes.

IF 0.9 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Stats Pub Date : 2024-09-01 Epub Date: 2024-08-31 DOI:10.3390/stats7030056
Lu Wang, Zhongzhe Ouyang, Xihong Lin
{"title":"Doubly Robust Estimation and Semiparametric Efficiency in Generalized Partially Linear Models with Missing Outcomes.","authors":"Lu Wang, Zhongzhe Ouyang, Xihong Lin","doi":"10.3390/stats7030056","DOIUrl":null,"url":null,"abstract":"<p><p>We investigate a semiparametric generalized partially linear regression model that accommodates missing outcomes, with some covariates modeled parametrically and others nonparametrically. We propose a class of augmented inverse probability weighted (AIPW) kernel-profile estimating equations. The nonparametric component is estimated using AIPW kernel estimating equations, while parametric regression coefficients are estimated using AIPW profile estimating equations. We demonstrate the doubly robust nature of the AIPW estimators for both nonparametric and parametric components. Specifically, these estimators remain consistent if either the assumed model for the probability of missing data or that for the conditional mean of the outcome, given covariates and auxiliary variables, is correctly specified, though not necessarily both simultaneously. Additionally, the AIPW profile estimator for parametric regression coefficients is consistent and asymptotically normal under the semiparametric model defined by the generalized partially linear model on complete data, assuming that the missing data mechanism is missing at random. When both working models are correctly specified, this estimator achieves semiparametric efficiency, with its asymptotic variance reaching the efficiency bound. We validate our approach through simulations to assess the finite sample performance of the proposed estimators and apply the method to a study that investigates risk factors associated with myocardial ischemia.</p>","PeriodicalId":93142,"journal":{"name":"Stats","volume":"7 3","pages":"924-943"},"PeriodicalIF":0.9000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12478555/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stats","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/stats7030056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/31 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate a semiparametric generalized partially linear regression model that accommodates missing outcomes, with some covariates modeled parametrically and others nonparametrically. We propose a class of augmented inverse probability weighted (AIPW) kernel-profile estimating equations. The nonparametric component is estimated using AIPW kernel estimating equations, while parametric regression coefficients are estimated using AIPW profile estimating equations. We demonstrate the doubly robust nature of the AIPW estimators for both nonparametric and parametric components. Specifically, these estimators remain consistent if either the assumed model for the probability of missing data or that for the conditional mean of the outcome, given covariates and auxiliary variables, is correctly specified, though not necessarily both simultaneously. Additionally, the AIPW profile estimator for parametric regression coefficients is consistent and asymptotically normal under the semiparametric model defined by the generalized partially linear model on complete data, assuming that the missing data mechanism is missing at random. When both working models are correctly specified, this estimator achieves semiparametric efficiency, with its asymptotic variance reaching the efficiency bound. We validate our approach through simulations to assess the finite sample performance of the proposed estimators and apply the method to a study that investigates risk factors associated with myocardial ischemia.

Abstract Image

Abstract Image

Abstract Image

缺失结果的广义部分线性模型的双鲁棒估计和半参数效率。
我们研究了一个半参数广义部分线性回归模型,该模型可以容纳缺失结果,其中一些协变量是参数化的,而另一些是非参数化的。提出了一类增广逆概率加权(AIPW)核剖面估计方程。采用AIPW核估计方程估计非参数分量,采用AIPW剖面估计方程估计参数回归系数。我们证明了非参数分量和参数分量的AIPW估计的双重鲁棒性。具体来说,如果缺失数据概率的假设模型或给定协变量和辅助变量的结果的条件均值的假设模型被正确指定,尽管不一定同时指定,但这些估计量保持一致。此外,假设缺失机制是随机缺失的,在完全数据上由广义部分线性模型定义的半参数模型下,参数回归系数的AIPW剖面估计是一致且渐近正态的。当两个工作模型都被正确指定时,该估计量达到半参数效率,其渐近方差达到效率界。我们通过模拟来验证我们的方法,以评估所提出的估计器的有限样本性能,并将该方法应用于研究心肌缺血相关风险因素的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信