{"title":"DUSP8 as a regulator of glioblastoma stem-like cell contribution to tumor vascularization.","authors":"Giorgia Castellani, Mariachiara Buccarelli, Quintino Giorgio D'Alessandris, Gabriele De Luca, Ramona Ilari, Francesca Pedini, Maurizio Martini, Cristiana Mollinari, Claudio Tabolacci, Gabriele Ricciardi, Emanuela Germanà, Valentina Lulli, Alessandra Boe, Mauro Biffoni, Giovanna Marziali, Roberto Pallini, Lucia Ricci-Vitiani","doi":"10.1186/s13046-025-03515-3","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastomas (GBMs) are highly vascularized cancers. Transdifferentiation of GBM stem-like cells (GSCs) into GSC-derived endothelial cells (GdECs) contributes to GBM neovascularization. To dissect the molecular mechanisms and the signaling pathways underlying GSC contribution to tumor vascularization, we identified a three miRNA signature able to discriminate GSCs from GdECs by regulating different signaling pathways. DUSP8 resulted as the common target of the miRNA signature identified and is negatively regulated by miR-1825. DUSP8 is emerging as a critical negative regulator MAPKs pathway and is involved in cell oxidative stress response and apoptosis, as well as, in several diseases, including cancer. In GBM patients, DUSP8 and miR-1825 expression are inversely correlated and DUSP8 down-regulation is significantly associated with higher microvascular density and poor overall survival. Exploring the impact of DUSP8 in GSC transdifferentiation, we demonstrated that DUSP8 down-regulation interferes with MAPK pathway and affects soluble factor release. In vitro DUSP8 modulation experiments showed that DUSP8 enforced expression impairs GdEC ability to form tube-like structures. Gene expression variations induced by DUSP8 modulation affect transcripts associated with EMT pathway, confirming that DUSP8 shutdown and, therefore, the activation of MAPK pathway, is mandatory to GSC transdifferentiation. In vivo experiments demonstrated that both DUSP8 enforced expression and silencing dramatically affect gliomagenesis. Dissecting the molecular mechanisms underlying the contribution of GSCs to tumor angiogenesis might represent a chance to develop new and more efficient antiangiogenic therapeutic protocols for GBM treatment. Our findings provide a strong rationale to develop therapeutic strategies based on modulation of DUSP8 for GBM treatment.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"44 1","pages":"269"},"PeriodicalIF":12.8000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Clinical Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13046-025-03515-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Glioblastomas (GBMs) are highly vascularized cancers. Transdifferentiation of GBM stem-like cells (GSCs) into GSC-derived endothelial cells (GdECs) contributes to GBM neovascularization. To dissect the molecular mechanisms and the signaling pathways underlying GSC contribution to tumor vascularization, we identified a three miRNA signature able to discriminate GSCs from GdECs by regulating different signaling pathways. DUSP8 resulted as the common target of the miRNA signature identified and is negatively regulated by miR-1825. DUSP8 is emerging as a critical negative regulator MAPKs pathway and is involved in cell oxidative stress response and apoptosis, as well as, in several diseases, including cancer. In GBM patients, DUSP8 and miR-1825 expression are inversely correlated and DUSP8 down-regulation is significantly associated with higher microvascular density and poor overall survival. Exploring the impact of DUSP8 in GSC transdifferentiation, we demonstrated that DUSP8 down-regulation interferes with MAPK pathway and affects soluble factor release. In vitro DUSP8 modulation experiments showed that DUSP8 enforced expression impairs GdEC ability to form tube-like structures. Gene expression variations induced by DUSP8 modulation affect transcripts associated with EMT pathway, confirming that DUSP8 shutdown and, therefore, the activation of MAPK pathway, is mandatory to GSC transdifferentiation. In vivo experiments demonstrated that both DUSP8 enforced expression and silencing dramatically affect gliomagenesis. Dissecting the molecular mechanisms underlying the contribution of GSCs to tumor angiogenesis might represent a chance to develop new and more efficient antiangiogenic therapeutic protocols for GBM treatment. Our findings provide a strong rationale to develop therapeutic strategies based on modulation of DUSP8 for GBM treatment.
期刊介绍:
The Journal of Experimental & Clinical Cancer Research is an esteemed peer-reviewed publication that focuses on cancer research, encompassing everything from fundamental discoveries to practical applications.
We welcome submissions that showcase groundbreaking advancements in the field of cancer research, especially those that bridge the gap between laboratory findings and clinical implementation. Our goal is to foster a deeper understanding of cancer, improve prevention and detection strategies, facilitate accurate diagnosis, and enhance treatment options.
We are particularly interested in manuscripts that shed light on the mechanisms behind the development and progression of cancer, including metastasis. Additionally, we encourage submissions that explore molecular alterations or biomarkers that can help predict the efficacy of different treatments or identify drug resistance. Translational research related to targeted therapies, personalized medicine, tumor immunotherapy, and innovative approaches applicable to clinical investigations are also of great interest to us.
We provide a platform for the dissemination of large-scale molecular characterizations of human tumors and encourage researchers to share their insights, discoveries, and methodologies with the wider scientific community.
By publishing high-quality research articles, reviews, and commentaries, the Journal of Experimental & Clinical Cancer Research strives to contribute to the continuous improvement of cancer care and make a meaningful impact on patients' lives.