Manish Tiwari, Gayatri Gujar, Siriluck Ponsuksili, C G Shashank, Shweta Sharma, Monika Sodhi, Manishi Mukesh
{"title":"Exploring the genetic footprints of high altitude adapted humans and livestock.","authors":"Manish Tiwari, Gayatri Gujar, Siriluck Ponsuksili, C G Shashank, Shweta Sharma, Monika Sodhi, Manishi Mukesh","doi":"10.1007/s00335-025-10161-9","DOIUrl":null,"url":null,"abstract":"<p><p>High-altitude environments such as the Himalayas, Andes, and Ethiopian regions pose extreme environmental challenges like hypobaric hypoxia, cold stress, and extreme UV radiation. This prompts both short-term physiological and long-term genetic adaptations in resident human and livestock populations. Various genetic studies suggest that candidate genes, such as HIF1A, EPAS1, EGLN1, MITF, ITPR2, VEGFA etc. are involved in hypoxia response, erythropoiesis, angiogenesis and metabolic regulation that results in high altitude adaptation. Phylogenetic comparisons of HIF family genes, suggest evolutionary divergence between humans and livestock, however, closer relationships exist among the ruminants suggesting shared adaptive pressures. The present study revealed that despite of the different evolutionary history, both humans and livestock across the different geographical regions show similar type of traits, driven by certain genes (either the same genes or different genes working in similar ways). These genes have been naturally selected over the time and helped the humans and livestock to survive at extreme environments. Furthermore, enrichment analysis suggests convergent evolution at the gene and pathway levels, supporting the genetic adaption in humans and livestock across the different geographical regions. This review will serve as a valuable information source for researchers working in the fields of high-altitude environments, evolutionary biology and environmental genomics.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mammalian Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00335-025-10161-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
High-altitude environments such as the Himalayas, Andes, and Ethiopian regions pose extreme environmental challenges like hypobaric hypoxia, cold stress, and extreme UV radiation. This prompts both short-term physiological and long-term genetic adaptations in resident human and livestock populations. Various genetic studies suggest that candidate genes, such as HIF1A, EPAS1, EGLN1, MITF, ITPR2, VEGFA etc. are involved in hypoxia response, erythropoiesis, angiogenesis and metabolic regulation that results in high altitude adaptation. Phylogenetic comparisons of HIF family genes, suggest evolutionary divergence between humans and livestock, however, closer relationships exist among the ruminants suggesting shared adaptive pressures. The present study revealed that despite of the different evolutionary history, both humans and livestock across the different geographical regions show similar type of traits, driven by certain genes (either the same genes or different genes working in similar ways). These genes have been naturally selected over the time and helped the humans and livestock to survive at extreme environments. Furthermore, enrichment analysis suggests convergent evolution at the gene and pathway levels, supporting the genetic adaption in humans and livestock across the different geographical regions. This review will serve as a valuable information source for researchers working in the fields of high-altitude environments, evolutionary biology and environmental genomics.
期刊介绍:
Mammalian Genome focuses on the experimental, theoretical and technical aspects of genetics, genomics, epigenetics and systems biology in mouse, human and other mammalian species, with an emphasis on the relationship between genotype and phenotype, elucidation of biological and disease pathways as well as experimental aspects of interventions, therapeutics, and precision medicine. The journal aims to publish high quality original papers that present novel findings in all areas of mammalian genetic research as well as review articles on areas of topical interest. The journal will also feature commentaries and editorials to inform readers of breakthrough discoveries as well as issues of research standards, policies and ethics.