{"title":"Revisiting thrombophilia testing: leveraging next-generation sequencing for precision in VTE management.","authors":"Ilham Youssry, Nardeen Ayad","doi":"10.1186/s40164-025-00698-5","DOIUrl":null,"url":null,"abstract":"<p><p>Venous thromboembolism (VTE) remains a significant cause of morbidity and mortality, particularly among individuals with inherited thrombophilia. Despite the widespread use of thrombophilia testing, its clinical value is often questioned due to inconsistent guidelines and limited prospective evidence. Traditional testing panels target only a narrow set of common variants-such as Factor V Leiden and Prothrombin G20210A-and may miss rare, complex, or combined mutations, especially in high-risk patients, including pediatric populations and those with unprovoked events or atypical presentations. This correspondence aims to re-evaluate the clinical role of thrombophilia testing in light of next-generation sequencing (NGS), a technology that offers a broader, more precise assessment of heritable thrombotic risk. We discuss how NGS improves variant detection, enhances risk stratification, and supports a precision medicine framework-particularly in clinical scenarios where standard algorithms fail. By integrating emerging evidence and real-world applications, we advocate for an updated, individualized approach to genetic testing in VTE care.</p>","PeriodicalId":12180,"journal":{"name":"Experimental Hematology & Oncology","volume":"14 1","pages":"118"},"PeriodicalIF":13.5000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12482613/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Hematology & Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40164-025-00698-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Venous thromboembolism (VTE) remains a significant cause of morbidity and mortality, particularly among individuals with inherited thrombophilia. Despite the widespread use of thrombophilia testing, its clinical value is often questioned due to inconsistent guidelines and limited prospective evidence. Traditional testing panels target only a narrow set of common variants-such as Factor V Leiden and Prothrombin G20210A-and may miss rare, complex, or combined mutations, especially in high-risk patients, including pediatric populations and those with unprovoked events or atypical presentations. This correspondence aims to re-evaluate the clinical role of thrombophilia testing in light of next-generation sequencing (NGS), a technology that offers a broader, more precise assessment of heritable thrombotic risk. We discuss how NGS improves variant detection, enhances risk stratification, and supports a precision medicine framework-particularly in clinical scenarios where standard algorithms fail. By integrating emerging evidence and real-world applications, we advocate for an updated, individualized approach to genetic testing in VTE care.
期刊介绍:
Experimental Hematology & Oncology is an open access journal that encompasses all aspects of hematology and oncology with an emphasis on preclinical, basic, patient-oriented and translational research. The journal acts as an international platform for sharing laboratory findings in these areas and makes a deliberate effort to publish clinical trials with 'negative' results and basic science studies with provocative findings.
Experimental Hematology & Oncology publishes original work, hypothesis, commentaries and timely reviews. With open access and rapid turnaround time from submission to publication, the journal strives to be a hub for disseminating new knowledge and discussing controversial topics for both basic scientists and busy clinicians in the closely related fields of hematology and oncology.