Tsholofelo L K Molale, Ferdinand J Dina Ebouel, Peter N Eze
{"title":"Beyond consumption: a multi-pathway human health exposure risk assessment of potentially toxic elements in geophagic soils of Botswana.","authors":"Tsholofelo L K Molale, Ferdinand J Dina Ebouel, Peter N Eze","doi":"10.1007/s10653-025-02791-4","DOIUrl":null,"url":null,"abstract":"<p><p>Geophagy, the deliberate consumption of earth materials, is a practice widely reported throughout human history; however, its potential health risks are poorly documented in Botswana. This research aimed to characterize geophagic soils based on their geochemical and mineralogical properties and to assess the potential human health risks associated with exposure via multiple pathways. Samples from six geophagic hotspots were analysed for macro elements (K, Ca, Mg, and P), microelements (Cu, Cr, Ni, Fe, Zn), and potentially toxic elements (PTEs) (As, Pb, Cd, Hg). Geochemical ratios from the United States Environmental Protection Agency (USEPA) were used to compute human health risk indices (HRIs), including carcinogenic risk (CR) and non-carcinogenic risks (hazard quotient (HQ) and hazard index (HI)). Mineralogy of the clay-sized fractions indicates the presence of kaolinite, goethite, illite, calcite, and muscovite. The average concentrations of macro elements followed the order: K (1.43%) > Ca (0.88%) > Mg (0.47%) > P (0.012%), while the average contents for microelements were Fe > Cu > Cr > Ni > Zn, and PTEs ranged as follows: Pb > As > Hg > Cd with Pb having a mean concentration of 15.16 mg kg<sup>-1</sup> and As 1.92 mg kg<sup>-1</sup> respectively. The HIs of the PTEs for all three exposure pathways are below 1 for both adults and children. Ni, Cr, and As have the highest mean CR values, which fall within the acceptable range of 1.00E-06 to 1.00E-04 for both adults and children for exposure through oral consumption and dermal contact, while the mean CR values for exposure through inhalation are all below 1.00E-06. Thus, exposure to PTEs in the soil is unlikely to pose health risks. Nevertheless, caution is necessary as cumulative exposure from other sources could significantly increase the overall health risk to practitioners.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"47 11","pages":"471"},"PeriodicalIF":3.8000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-025-02791-4","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Geophagy, the deliberate consumption of earth materials, is a practice widely reported throughout human history; however, its potential health risks are poorly documented in Botswana. This research aimed to characterize geophagic soils based on their geochemical and mineralogical properties and to assess the potential human health risks associated with exposure via multiple pathways. Samples from six geophagic hotspots were analysed for macro elements (K, Ca, Mg, and P), microelements (Cu, Cr, Ni, Fe, Zn), and potentially toxic elements (PTEs) (As, Pb, Cd, Hg). Geochemical ratios from the United States Environmental Protection Agency (USEPA) were used to compute human health risk indices (HRIs), including carcinogenic risk (CR) and non-carcinogenic risks (hazard quotient (HQ) and hazard index (HI)). Mineralogy of the clay-sized fractions indicates the presence of kaolinite, goethite, illite, calcite, and muscovite. The average concentrations of macro elements followed the order: K (1.43%) > Ca (0.88%) > Mg (0.47%) > P (0.012%), while the average contents for microelements were Fe > Cu > Cr > Ni > Zn, and PTEs ranged as follows: Pb > As > Hg > Cd with Pb having a mean concentration of 15.16 mg kg-1 and As 1.92 mg kg-1 respectively. The HIs of the PTEs for all three exposure pathways are below 1 for both adults and children. Ni, Cr, and As have the highest mean CR values, which fall within the acceptable range of 1.00E-06 to 1.00E-04 for both adults and children for exposure through oral consumption and dermal contact, while the mean CR values for exposure through inhalation are all below 1.00E-06. Thus, exposure to PTEs in the soil is unlikely to pose health risks. Nevertheless, caution is necessary as cumulative exposure from other sources could significantly increase the overall health risk to practitioners.
期刊介绍:
Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people.
Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes.
The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.