{"title":"Nanocochleates in Clinical Trials: A Review of Current Status, Challenges, and Future Directions.","authors":"Alka Singh, Sushma Verma","doi":"10.2174/0113892002381978250909113807","DOIUrl":null,"url":null,"abstract":"<p><p>Nanocochleates are novel lipid-based nanoparticles with a distinctive, multilayered, rolled-up structure that resembles the spirals of a cochlea. They form when bivalent cations, such as calcium, interact with negatively charged lipid bilayers. These structures are gaining popularity in drug delivery due to their stability, biocompatibility, and ability to encapsulate and shield a wide range of bioactive substances, including hydrophobic drugs, peptides, and nucleic acids. Nanocochelates can withstand harsh environmental conditions, such as acidic pH or enzymatic degradation, making them suitable carriers for oral, injectable, and transdermal medication administration. Their unique construction ena-bles the gradual release of encapsulated medicines, thereby increasing bioavailability and therapeutic effectiveness. Additionally, nanocochleates can target specific tissues or cells, allowing for precision medical methods. A recent study demonstrates their promise for overcoming issues in the administration of poorly water-soluble medicines, gene therapy agents, and vaccines. Nanocochleates have shown promise in preclin-ical trials for the management of inflammatory diseases, cancer, and infectious diseases. Despite their potential, further research is needed to optimize large-scale manufacturing, maintain uniform quality, and address regulatory challenges. This review provides a detailed discussion of nanocochleate prepa-ration methods, with a particular focus on entrapment, hydrogel approaches, and dialysis methods. The paper reviews characterization experiments, including particle size measurements, encapsulation effec-tiveness, surface morphology, and in vitro release tests. Furthermore, the article discusses the feasibility of industrial-scale formation with pure lipid feedstock.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892002381978250909113807","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Nanocochleates are novel lipid-based nanoparticles with a distinctive, multilayered, rolled-up structure that resembles the spirals of a cochlea. They form when bivalent cations, such as calcium, interact with negatively charged lipid bilayers. These structures are gaining popularity in drug delivery due to their stability, biocompatibility, and ability to encapsulate and shield a wide range of bioactive substances, including hydrophobic drugs, peptides, and nucleic acids. Nanocochelates can withstand harsh environmental conditions, such as acidic pH or enzymatic degradation, making them suitable carriers for oral, injectable, and transdermal medication administration. Their unique construction ena-bles the gradual release of encapsulated medicines, thereby increasing bioavailability and therapeutic effectiveness. Additionally, nanocochleates can target specific tissues or cells, allowing for precision medical methods. A recent study demonstrates their promise for overcoming issues in the administration of poorly water-soluble medicines, gene therapy agents, and vaccines. Nanocochleates have shown promise in preclin-ical trials for the management of inflammatory diseases, cancer, and infectious diseases. Despite their potential, further research is needed to optimize large-scale manufacturing, maintain uniform quality, and address regulatory challenges. This review provides a detailed discussion of nanocochleate prepa-ration methods, with a particular focus on entrapment, hydrogel approaches, and dialysis methods. The paper reviews characterization experiments, including particle size measurements, encapsulation effec-tiveness, surface morphology, and in vitro release tests. Furthermore, the article discusses the feasibility of industrial-scale formation with pure lipid feedstock.
期刊介绍:
Current Drug Metabolism aims to cover all the latest and outstanding developments in drug metabolism, pharmacokinetics, and drug disposition. The journal serves as an international forum for the publication of full-length/mini review, research articles and guest edited issues in drug metabolism. Current Drug Metabolism is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the most important developments. The journal covers the following general topic areas: pharmaceutics, pharmacokinetics, toxicology, and most importantly drug metabolism.
More specifically, in vitro and in vivo drug metabolism of phase I and phase II enzymes or metabolic pathways; drug-drug interactions and enzyme kinetics; pharmacokinetics, pharmacokinetic-pharmacodynamic modeling, and toxicokinetics; interspecies differences in metabolism or pharmacokinetics, species scaling and extrapolations; drug transporters; target organ toxicity and interindividual variability in drug exposure-response; extrahepatic metabolism; bioactivation, reactive metabolites, and developments for the identification of drug metabolites. Preclinical and clinical reviews describing the drug metabolism and pharmacokinetics of marketed drugs or drug classes.