{"title":"Anticancer Potential of Polyphenols in Legumes: Mechanisms and Insights.","authors":"Amber Rizwan, Husna Shaikh, Humaira Farooqi","doi":"10.2174/0113892002377364250906070612","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Cancer poses a tough global health challenge, prompting the exploration of innovative prevention and treatment strategies. Polyphenols, bioactive compounds abundant in various plant-based foods, have gained significant attention for their potential anticancer properties. Legumes, characterized by their excellent nutritional profile, offer a promising source of polyphenols such as ferulic acid, caffeic acid, genistein, and kaempferol, which exhibit notable antioxidative and anti-inflammatory effects.</p><p><strong>Methods: </strong>This review systematically analyzed peer-reviewed literature on the polyphenolic content of various legumes. No original research or experimental work was carried out as part of this study. Databases such as PubMed, Google Scholar, Scopus, SpringerLink, and ScienceDirect were searched for studies focusing on the identification and pharmacokinetic profiles of legume-derived polyphenols. Emphasis was placed on examining the mechanisms of action, including modulation of cell signalling pathways, induction of apoptosis, inhibition of angiogenesis, and influence on detoxification enzymes. The review also assessed the ADME (absorption, distribution, metabolism, and excretion) properties of key polyphenols to evaluate their bioavailability and therapeutic efficacy.</p><p><strong>Results: </strong>The analysis revealed that legumes are significant sources of polyphenols with demonstrated anti-cancer activity. Compounds like genistein and kaempferol modulate key signalling pathways such as PI3K/Akt, MAPK, and NF-kB, which are involved in cell proliferation, survival, and inflammation. Additionally, these polyphenols can promote apoptosis and inhibit angiogenesis, thereby impeding tumor growth and metastasis.</p><p><strong>Discussion: </strong>The findings underscore the potential of legume-derived polyphenols in cancer prevention and management. By addressing the ADME of Polyphenols, this study aims to deepen our understanding of their pharmacological potential, providing a foundation for developing dietary strategies and functional foods to effectively prevent and manage cancer. Addressing the limitations in bioavailability through novel delivery systems and dietary formulations could enhance their effectiveness.</p><p><strong>Conclusion: </strong>Combining polyphenol-rich legume diets with conventional cancer therapies may offer a synergistic therapeutic effect and promote better health outcomes. However, it is essential to first establish through rigorous scientific research that polyphenols do not produce any unwanted adverse effects when used alongside standard medications. Further research focusing on improving bioavailability and validating in vivo efficacy will be crucial for translating these findings into practical cancer prevention treatment approaches.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892002377364250906070612","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Cancer poses a tough global health challenge, prompting the exploration of innovative prevention and treatment strategies. Polyphenols, bioactive compounds abundant in various plant-based foods, have gained significant attention for their potential anticancer properties. Legumes, characterized by their excellent nutritional profile, offer a promising source of polyphenols such as ferulic acid, caffeic acid, genistein, and kaempferol, which exhibit notable antioxidative and anti-inflammatory effects.
Methods: This review systematically analyzed peer-reviewed literature on the polyphenolic content of various legumes. No original research or experimental work was carried out as part of this study. Databases such as PubMed, Google Scholar, Scopus, SpringerLink, and ScienceDirect were searched for studies focusing on the identification and pharmacokinetic profiles of legume-derived polyphenols. Emphasis was placed on examining the mechanisms of action, including modulation of cell signalling pathways, induction of apoptosis, inhibition of angiogenesis, and influence on detoxification enzymes. The review also assessed the ADME (absorption, distribution, metabolism, and excretion) properties of key polyphenols to evaluate their bioavailability and therapeutic efficacy.
Results: The analysis revealed that legumes are significant sources of polyphenols with demonstrated anti-cancer activity. Compounds like genistein and kaempferol modulate key signalling pathways such as PI3K/Akt, MAPK, and NF-kB, which are involved in cell proliferation, survival, and inflammation. Additionally, these polyphenols can promote apoptosis and inhibit angiogenesis, thereby impeding tumor growth and metastasis.
Discussion: The findings underscore the potential of legume-derived polyphenols in cancer prevention and management. By addressing the ADME of Polyphenols, this study aims to deepen our understanding of their pharmacological potential, providing a foundation for developing dietary strategies and functional foods to effectively prevent and manage cancer. Addressing the limitations in bioavailability through novel delivery systems and dietary formulations could enhance their effectiveness.
Conclusion: Combining polyphenol-rich legume diets with conventional cancer therapies may offer a synergistic therapeutic effect and promote better health outcomes. However, it is essential to first establish through rigorous scientific research that polyphenols do not produce any unwanted adverse effects when used alongside standard medications. Further research focusing on improving bioavailability and validating in vivo efficacy will be crucial for translating these findings into practical cancer prevention treatment approaches.
期刊介绍:
Current Drug Metabolism aims to cover all the latest and outstanding developments in drug metabolism, pharmacokinetics, and drug disposition. The journal serves as an international forum for the publication of full-length/mini review, research articles and guest edited issues in drug metabolism. Current Drug Metabolism is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the most important developments. The journal covers the following general topic areas: pharmaceutics, pharmacokinetics, toxicology, and most importantly drug metabolism.
More specifically, in vitro and in vivo drug metabolism of phase I and phase II enzymes or metabolic pathways; drug-drug interactions and enzyme kinetics; pharmacokinetics, pharmacokinetic-pharmacodynamic modeling, and toxicokinetics; interspecies differences in metabolism or pharmacokinetics, species scaling and extrapolations; drug transporters; target organ toxicity and interindividual variability in drug exposure-response; extrahepatic metabolism; bioactivation, reactive metabolites, and developments for the identification of drug metabolites. Preclinical and clinical reviews describing the drug metabolism and pharmacokinetics of marketed drugs or drug classes.