Structure analysis of the Lorenz-84 chaotic attractor.

IF 3.2 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-10-01 DOI:10.1063/5.0287725
M Rosalie, S Mangiarotti
{"title":"Structure analysis of the Lorenz-84 chaotic attractor.","authors":"M Rosalie, S Mangiarotti","doi":"10.1063/5.0287725","DOIUrl":null,"url":null,"abstract":"<p><p>The structure of the Lorenz-84 attractor is investigated in this study. Its dynamics belonging to weakly dissipative chaos, classical approaches cannot be used to analyze its structure. The color tracer mapping is introduced for this purpose and used to extract the three-dimensional structure of the attractor. The analysis shows that the attractor is a nontrivial case of toroidal chaos: it is organized around a period-2 cavity. Moreover, the structure reveals a new mechanism generating chaos in the attractor: a multidirectional stretching. The attractor structure is then artificially represented on a two-dimensional branched manifold, and its validation is performed using a set of periodic orbits previously extracted.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 10","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0287725","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The structure of the Lorenz-84 attractor is investigated in this study. Its dynamics belonging to weakly dissipative chaos, classical approaches cannot be used to analyze its structure. The color tracer mapping is introduced for this purpose and used to extract the three-dimensional structure of the attractor. The analysis shows that the attractor is a nontrivial case of toroidal chaos: it is organized around a period-2 cavity. Moreover, the structure reveals a new mechanism generating chaos in the attractor: a multidirectional stretching. The attractor structure is then artificially represented on a two-dimensional branched manifold, and its validation is performed using a set of periodic orbits previously extracted.

Lorenz-84混沌吸引子的结构分析。
本文研究了Lorenz-84吸引子的结构。它的动力学属于弱耗散混沌,不能用经典方法来分析其结构。为此引入了颜色示踪映射,用于提取吸引子的三维结构。分析表明,吸引子是非平凡的环面混沌情况:它是围绕一个周期为2的空腔组织的。此外,该结构揭示了吸引子产生混沌的新机制:多向拉伸。然后将吸引子结构人工地表示在二维分支流形上,并使用先前提取的一组周期轨道进行验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信