{"title":"Design principles of transcription factors with intrinsically disordered regions.","authors":"Wencheng Ji, Ori Hachmo, Naama Barkai, Ariel Amir","doi":"10.7554/eLife.104956","DOIUrl":null,"url":null,"abstract":"<p><p>Transcription factors (TFs) are proteins crucial for regulating gene expression. Effective regulation requires the TFs to rapidly bind to their correct target, enabling the cell to respond efficiently to stimuli such as nutrient availability or the presence of toxins. However, the search process is hindered by slow diffusive movement and the presence of 'false' targets - DNA segments that are similar to the true target. In eukaryotic cells, most TFs contain an intrinsically disordered region (IDR), which is commonly assumed to behave as a long, flexible polymeric tail composed of hundreds of amino acids. Recent experimental findings indicate that the IDR of certain TFs plays a pivotal role in the search process. However, the principles underlying the IDR's role remain unclear. Here, we reveal key design principles of the IDR related to TF binding affinity and search time. Our results demonstrate that the IDR significantly enhances both of these aspects. Furthermore, our model shows good agreement with experimental results, and we propose further experiments to validate the model's predictions.</p>","PeriodicalId":11640,"journal":{"name":"eLife","volume":"14 ","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12483512/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eLife","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7554/eLife.104956","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Transcription factors (TFs) are proteins crucial for regulating gene expression. Effective regulation requires the TFs to rapidly bind to their correct target, enabling the cell to respond efficiently to stimuli such as nutrient availability or the presence of toxins. However, the search process is hindered by slow diffusive movement and the presence of 'false' targets - DNA segments that are similar to the true target. In eukaryotic cells, most TFs contain an intrinsically disordered region (IDR), which is commonly assumed to behave as a long, flexible polymeric tail composed of hundreds of amino acids. Recent experimental findings indicate that the IDR of certain TFs plays a pivotal role in the search process. However, the principles underlying the IDR's role remain unclear. Here, we reveal key design principles of the IDR related to TF binding affinity and search time. Our results demonstrate that the IDR significantly enhances both of these aspects. Furthermore, our model shows good agreement with experimental results, and we propose further experiments to validate the model's predictions.
期刊介绍:
eLife is a distinguished, not-for-profit, peer-reviewed open access scientific journal that specializes in the fields of biomedical and life sciences. eLife is known for its selective publication process, which includes a variety of article types such as:
Research Articles: Detailed reports of original research findings.
Short Reports: Concise presentations of significant findings that do not warrant a full-length research article.
Tools and Resources: Descriptions of new tools, technologies, or resources that facilitate scientific research.
Research Advances: Brief reports on significant scientific advancements that have immediate implications for the field.
Scientific Correspondence: Short communications that comment on or provide additional information related to published articles.
Review Articles: Comprehensive overviews of a specific topic or field within the life sciences.