Bifurcation analysis of delay-coupling induced bistability in coupled van der Pol oscillators.

IF 3.2 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-10-01 DOI:10.1063/5.0288450
Sergey Astakhov, Evgeny Elizarov, Galina Strelkova, Vladimir Astakhov
{"title":"Bifurcation analysis of delay-coupling induced bistability in coupled van der Pol oscillators.","authors":"Sergey Astakhov, Evgeny Elizarov, Galina Strelkova, Vladimir Astakhov","doi":"10.1063/5.0288450","DOIUrl":null,"url":null,"abstract":"<p><p>It is shown that the coexistence of synchronous and asynchronous states, being typical for chimera states in large networks of coupled oscillators, can be formed in a minimal chain of two coupled van der Pol oscillators with dissipative delay coupling. This means that a stable limit cycle corresponding to synchronization and an attractive two-dimensional torus (quasiperiodicity) related to an incoherence regime of interacting oscillators coexist in the phase space at the same parameter values. Bistability is observed within the main synchronization region in the control parameter plane at the boundary between the locking and suppression regions. This phenomenon emerges as the delay time in the communication channel increases. The bifurcation mechanism of bistability formation is revealed and studied for a system of delay differential equations, its finite-dimensional model of ordinary differential equations, and by using the amplitude and phase approach.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 10","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0288450","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

It is shown that the coexistence of synchronous and asynchronous states, being typical for chimera states in large networks of coupled oscillators, can be formed in a minimal chain of two coupled van der Pol oscillators with dissipative delay coupling. This means that a stable limit cycle corresponding to synchronization and an attractive two-dimensional torus (quasiperiodicity) related to an incoherence regime of interacting oscillators coexist in the phase space at the same parameter values. Bistability is observed within the main synchronization region in the control parameter plane at the boundary between the locking and suppression regions. This phenomenon emerges as the delay time in the communication channel increases. The bifurcation mechanism of bistability formation is revealed and studied for a system of delay differential equations, its finite-dimensional model of ordinary differential equations, and by using the amplitude and phase approach.

耦合van der Pol振荡器中延迟耦合诱导双稳性的分岔分析。
结果表明,在具有耗散延迟耦合的两个耦合范德堡尔振子的最小链中,可以形成同步和异步态共存,这是大型耦合振子网络中典型的嵌合体态。这意味着一个稳定的极限环对应于同步和一个有吸引力的二维环(准周期性)相关的相互作用振荡器的非相干制度共存于相空间在相同的参数值。在锁定区和抑制区边界处的控制参数平面主同步区内观察到双稳性。这种现象随着通信信道延迟时间的增加而出现。揭示并研究了一类时滞微分方程系统及其有限维常微分方程模型双稳性形成的分岔机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信