{"title":"Precision Medicine: Design of Immune Inert Exosomes for Targeted Gene Delivery.","authors":"Fawzy A Saad","doi":"10.2174/0115665232409032250908114520","DOIUrl":null,"url":null,"abstract":"<p><p>Exosomes represent the smallest size among extracellular vesicles, which also include apoptotic bodies and microvesicles. Exosomes are natural nanocarriers that play a key role in intracellular communication, consisting of a hydrophobic lipid bilayer membrane and a hydrophilic core. The membrane compositions of exosomes are similar to those of the parent cells from which they are generated. Normally, the exosome membrane contains diacylglycerol, ceramide, cholesterol, and various surface proteins, including tetraspanins and Lamb2. Almost all cell types secrete exosomes into body fluids through exocytosis, including stem cells, epithelial cells, endothelial cells, immune cells, tumor cells, neurons, mast cells, oligodendrocytes, reticulocytes, macrophages, platelets, and astrocytes. Every cell type expresses a distinct type of exosomes carrying various bioactive molecules. Exosomes are major transporters of bioactive cargo, including enzymes, receptors, growth and transcription factors, nucleic acids, lipids, and other metabolites, which strongly affect the physiology of recipient cells. Exosomes are not only potent drug and gene delivery nanocarriers, but also have potential for disease diagnosis, tissue regeneration, and immunomodulation. Exosomes are present in various body fluids, including plasma, serum, saliva, milk, nasal secretions, urine, amniotic fluid, semen, and cerebrospinal fluid, among others. Stem cell-made exosomes are potential natural therapeutics, which is due to their rejuvenating cargo and ability to cross biological barriers. However, natural exosomes' inefficient cargo transfer and short lifespan in the bloodstream have hindered their progress in therapeutic interventions. Genetic engineering of the parent cell allows for loading specific therapeutic cargo into the lumen of newly generated exosomes and/or displaying certain homing peptides or ligands at their surface, leading to extension of their lifespan and precise delivery to specific organs or tissues. This minireview explores the creation of designer exosomes through parent cell engineering and their utilization for guiding the delivery of tailored therapeutic cargo to specific organs while evading the host's innate immune response.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current gene therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115665232409032250908114520","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Exosomes represent the smallest size among extracellular vesicles, which also include apoptotic bodies and microvesicles. Exosomes are natural nanocarriers that play a key role in intracellular communication, consisting of a hydrophobic lipid bilayer membrane and a hydrophilic core. The membrane compositions of exosomes are similar to those of the parent cells from which they are generated. Normally, the exosome membrane contains diacylglycerol, ceramide, cholesterol, and various surface proteins, including tetraspanins and Lamb2. Almost all cell types secrete exosomes into body fluids through exocytosis, including stem cells, epithelial cells, endothelial cells, immune cells, tumor cells, neurons, mast cells, oligodendrocytes, reticulocytes, macrophages, platelets, and astrocytes. Every cell type expresses a distinct type of exosomes carrying various bioactive molecules. Exosomes are major transporters of bioactive cargo, including enzymes, receptors, growth and transcription factors, nucleic acids, lipids, and other metabolites, which strongly affect the physiology of recipient cells. Exosomes are not only potent drug and gene delivery nanocarriers, but also have potential for disease diagnosis, tissue regeneration, and immunomodulation. Exosomes are present in various body fluids, including plasma, serum, saliva, milk, nasal secretions, urine, amniotic fluid, semen, and cerebrospinal fluid, among others. Stem cell-made exosomes are potential natural therapeutics, which is due to their rejuvenating cargo and ability to cross biological barriers. However, natural exosomes' inefficient cargo transfer and short lifespan in the bloodstream have hindered their progress in therapeutic interventions. Genetic engineering of the parent cell allows for loading specific therapeutic cargo into the lumen of newly generated exosomes and/or displaying certain homing peptides or ligands at their surface, leading to extension of their lifespan and precise delivery to specific organs or tissues. This minireview explores the creation of designer exosomes through parent cell engineering and their utilization for guiding the delivery of tailored therapeutic cargo to specific organs while evading the host's innate immune response.
期刊介绍:
Current Gene Therapy is a bi-monthly peer-reviewed journal aimed at academic and industrial scientists with an interest in major topics concerning basic research and clinical applications of gene and cell therapy of diseases. Cell therapy manuscripts can also include application in diseases when cells have been genetically modified. Current Gene Therapy publishes full-length/mini reviews and original research on the latest developments in gene transfer and gene expression analysis, vector development, cellular genetic engineering, animal models and human clinical applications of gene and cell therapy for the treatment of diseases.
Current Gene Therapy publishes reviews and original research containing experimental data on gene and cell therapy. The journal also includes manuscripts on technological advances, ethical and regulatory considerations of gene and cell therapy. Reviews should provide the reader with a comprehensive assessment of any area of experimental biology applied to molecular medicine that is not only of significance within a particular field of gene therapy and cell therapy but also of interest to investigators in other fields. Authors are encouraged to provide their own assessment and vision for future advances. Reviews are also welcome on late breaking discoveries on which substantial literature has not yet been amassed. Such reviews provide a forum for sharply focused topics of recent experimental investigations in gene therapy primarily to make these results accessible to both clinical and basic researchers. Manuscripts containing experimental data should be original data, not previously published.