Towards population scale testis volume segmentation in DIXON MRI

IF 6.3 2区 医学 Q1 BIOLOGY
Jan Ernsting , Philipp Nikolas Beeken , Lynn Ogoniak , Jacqueline Kockwelp , Wolfgang Roll , Tim Hahn , Alexander Siegfried Busch , Benjamin Risse
{"title":"Towards population scale testis volume segmentation in DIXON MRI","authors":"Jan Ernsting ,&nbsp;Philipp Nikolas Beeken ,&nbsp;Lynn Ogoniak ,&nbsp;Jacqueline Kockwelp ,&nbsp;Wolfgang Roll ,&nbsp;Tim Hahn ,&nbsp;Alexander Siegfried Busch ,&nbsp;Benjamin Risse","doi":"10.1016/j.compbiomed.2025.111139","DOIUrl":null,"url":null,"abstract":"<div><div>Testis size is known to be one of the main predictors of male fertility, usually assessed in clinical workup via palpation or imaging. Despite its potential, population-level evaluation of testicular volume using imaging remains underexplored. Previous studies, limited by small and biased datasets, have demonstrated the feasibility of machine learning for testis volume segmentation. This paper presents an evaluation of segmentation methods for testicular volume using Magnetic Resonance Imaging data from the UKBiobank. The best model achieves a median dice score of 0.89, compared to median dice score of 0.85 for human interrater reliability on the same dataset, enabling large-scale annotation on a population scale for the first time. Our overall aim is to provide a trained model, comparative baseline methods, and annotated training data to enhance accessibility and reproducibility in testis MRI segmentation research.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"198 ","pages":"Article 111139"},"PeriodicalIF":6.3000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525014921","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Testis size is known to be one of the main predictors of male fertility, usually assessed in clinical workup via palpation or imaging. Despite its potential, population-level evaluation of testicular volume using imaging remains underexplored. Previous studies, limited by small and biased datasets, have demonstrated the feasibility of machine learning for testis volume segmentation. This paper presents an evaluation of segmentation methods for testicular volume using Magnetic Resonance Imaging data from the UKBiobank. The best model achieves a median dice score of 0.89, compared to median dice score of 0.85 for human interrater reliability on the same dataset, enabling large-scale annotation on a population scale for the first time. Our overall aim is to provide a trained model, comparative baseline methods, and annotated training data to enhance accessibility and reproducibility in testis MRI segmentation research.
基于群体尺度的DIXON MRI睾丸体积分割。
睾丸大小被认为是男性生育能力的主要预测因素之一,通常在临床检查中通过触诊或成像进行评估。尽管具有潜力,但使用成像技术对睾丸体积进行人群水平评估仍未得到充分探索。先前的研究受到小而有偏差的数据集的限制,已经证明了机器学习用于睾丸体积分割的可行性。本文介绍了使用UKBiobank的磁共振成像数据对睾丸体积分割方法的评估。最佳模型的中位数骰子得分为0.89,而同一数据集上人类判读器可靠性的中位数骰子得分为0.85,首次实现了在人口规模上的大规模标注。我们的总体目标是提供一个训练模型、比较基线方法和注释训练数据,以提高睾丸MRI分割研究的可及性和可重复性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信