Jan Ernsting , Philipp Nikolas Beeken , Lynn Ogoniak , Jacqueline Kockwelp , Wolfgang Roll , Tim Hahn , Alexander Siegfried Busch , Benjamin Risse
{"title":"Towards population scale testis volume segmentation in DIXON MRI","authors":"Jan Ernsting , Philipp Nikolas Beeken , Lynn Ogoniak , Jacqueline Kockwelp , Wolfgang Roll , Tim Hahn , Alexander Siegfried Busch , Benjamin Risse","doi":"10.1016/j.compbiomed.2025.111139","DOIUrl":null,"url":null,"abstract":"<div><div>Testis size is known to be one of the main predictors of male fertility, usually assessed in clinical workup via palpation or imaging. Despite its potential, population-level evaluation of testicular volume using imaging remains underexplored. Previous studies, limited by small and biased datasets, have demonstrated the feasibility of machine learning for testis volume segmentation. This paper presents an evaluation of segmentation methods for testicular volume using Magnetic Resonance Imaging data from the UKBiobank. The best model achieves a median dice score of 0.89, compared to median dice score of 0.85 for human interrater reliability on the same dataset, enabling large-scale annotation on a population scale for the first time. Our overall aim is to provide a trained model, comparative baseline methods, and annotated training data to enhance accessibility and reproducibility in testis MRI segmentation research.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"198 ","pages":"Article 111139"},"PeriodicalIF":6.3000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525014921","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Testis size is known to be one of the main predictors of male fertility, usually assessed in clinical workup via palpation or imaging. Despite its potential, population-level evaluation of testicular volume using imaging remains underexplored. Previous studies, limited by small and biased datasets, have demonstrated the feasibility of machine learning for testis volume segmentation. This paper presents an evaluation of segmentation methods for testicular volume using Magnetic Resonance Imaging data from the UKBiobank. The best model achieves a median dice score of 0.89, compared to median dice score of 0.85 for human interrater reliability on the same dataset, enabling large-scale annotation on a population scale for the first time. Our overall aim is to provide a trained model, comparative baseline methods, and annotated training data to enhance accessibility and reproducibility in testis MRI segmentation research.
期刊介绍:
Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.