Induction of Apoptosis and Activation of Endoplasmic Reticulum Stress by SJ6986 in Diffuse Large B-cell Lymphoma.

IF 3 4区 医学 Q3 CHEMISTRY, MEDICINAL
Chenxing Zhang, Bangxue Jiang, Xiaomei Liang, Yinting Chen, Zhaozheng Li, Minyi Zhao, Dongjun Lin
{"title":"Induction of Apoptosis and Activation of Endoplasmic Reticulum Stress by SJ6986 in Diffuse Large B-cell Lymphoma.","authors":"Chenxing Zhang, Bangxue Jiang, Xiaomei Liang, Yinting Chen, Zhaozheng Li, Minyi Zhao, Dongjun Lin","doi":"10.2174/0118715206407523250902055051","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Diffuse large B-cell lymphoma (DLBCL) is one of the most prevalent hematological malignancies with high mortality. G1 to S phase transition 1 (GSPT1), a key translation termination factor involved in protein synthesis, has been implicated in tumor progression. This study aimed to investigate the effectiveness and underlying mechanisms of the GSPT1 degrader SJ6986 in DLBCL.</p><p><strong>Methods: </strong>The TCGA and GTEx datasets were utilized to assess the expression of GSPT1 in DLBCL. The viability and proliferation of DLBCL cells were detected using the Cell Counting Kit-8 (CCK-8) assay. Cell apoptosis was detected via flow cytometry. The expression of GSPT1 was evaluated using qRT-PCR and Western blot. Xenograft mouse models were employed to explore the in vivo therapeutic potential of SJ6986. RNA sequencing was used to explore the potential mechanism of SJ6986 in DLBCL.</p><p><strong>Results: </strong>This study first identified that GSPT1 is highly expressed in DLBCL and demonstrated that its genetic knockdown significantly suppressed the activity of DLBCL cells. Furthermore, it was found that SJ6986 effectively reduced the proliferation of DLBCL cells, induced cell apoptosis, and inhibited tumor growth in vivo without significant toxicity. Mechanistically, RNA sequencing analysis showed that the endoplasmic reticulum (ER) stress was significantly triggered following SJ6986 treatment, and SJ6986 was found to activate the ER stress-related apoptosis in DLBCL cells.</p><p><strong>Discussion: </strong>Our findings suggested that SJ6986 exerts its anti-tumor effects in DLBCL and activates the ER stress-related apoptotic signaling. These results supported SJ6986 as a viable anticancer drug for treating DLBCL. Future studies should further investigate its mechanism and evaluate its clinical application value.</p><p><strong>Conclusions: </strong>This study validated the efficacy and safety of SJ6986 in treating DLBCL and discovered its role in inducing ER stress and subsequent apoptosis, offering a promising therapeutic option for DLBCL patients.</p>","PeriodicalId":7934,"journal":{"name":"Anti-cancer agents in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-cancer agents in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0118715206407523250902055051","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Diffuse large B-cell lymphoma (DLBCL) is one of the most prevalent hematological malignancies with high mortality. G1 to S phase transition 1 (GSPT1), a key translation termination factor involved in protein synthesis, has been implicated in tumor progression. This study aimed to investigate the effectiveness and underlying mechanisms of the GSPT1 degrader SJ6986 in DLBCL.

Methods: The TCGA and GTEx datasets were utilized to assess the expression of GSPT1 in DLBCL. The viability and proliferation of DLBCL cells were detected using the Cell Counting Kit-8 (CCK-8) assay. Cell apoptosis was detected via flow cytometry. The expression of GSPT1 was evaluated using qRT-PCR and Western blot. Xenograft mouse models were employed to explore the in vivo therapeutic potential of SJ6986. RNA sequencing was used to explore the potential mechanism of SJ6986 in DLBCL.

Results: This study first identified that GSPT1 is highly expressed in DLBCL and demonstrated that its genetic knockdown significantly suppressed the activity of DLBCL cells. Furthermore, it was found that SJ6986 effectively reduced the proliferation of DLBCL cells, induced cell apoptosis, and inhibited tumor growth in vivo without significant toxicity. Mechanistically, RNA sequencing analysis showed that the endoplasmic reticulum (ER) stress was significantly triggered following SJ6986 treatment, and SJ6986 was found to activate the ER stress-related apoptosis in DLBCL cells.

Discussion: Our findings suggested that SJ6986 exerts its anti-tumor effects in DLBCL and activates the ER stress-related apoptotic signaling. These results supported SJ6986 as a viable anticancer drug for treating DLBCL. Future studies should further investigate its mechanism and evaluate its clinical application value.

Conclusions: This study validated the efficacy and safety of SJ6986 in treating DLBCL and discovered its role in inducing ER stress and subsequent apoptosis, offering a promising therapeutic option for DLBCL patients.

SJ6986诱导弥漫性大b细胞淋巴瘤细胞凋亡和内质网应激的激活。
弥漫性大b细胞淋巴瘤(DLBCL)是最常见的血液系统恶性肿瘤之一,死亡率高。G1到S相变1 (GSPT1)是参与蛋白质合成的关键翻译终止因子,与肿瘤进展有关。本研究旨在探讨GSPT1降解物SJ6986在DLBCL中的作用及其机制。方法:采用TCGA和GTEx数据集检测GSPT1在DLBCL中的表达。采用细胞计数试剂盒-8 (CCK-8)法检测DLBCL细胞的活力和增殖。流式细胞术检测细胞凋亡。采用qRT-PCR和Western blot检测GSPT1的表达。采用异种移植小鼠模型探讨SJ6986在体内的治疗潜力。利用RNA测序技术探讨SJ6986在DLBCL中的潜在作用机制。结果:本研究首次发现GSPT1在DLBCL中高表达,并证明其基因敲低可显著抑制DLBCL细胞活性。此外,我们发现SJ6986在体内可有效降低DLBCL细胞的增殖,诱导细胞凋亡,抑制肿瘤生长,且无明显毒性。在机制上,RNA测序分析显示SJ6986处理后显著触发内质网(ER)应激,并且发现SJ6986激活DLBCL细胞内质网应激相关的凋亡。讨论:我们的研究结果提示SJ6986在DLBCL中发挥抗肿瘤作用,激活内质网应激相关的凋亡信号。这些结果支持SJ6986作为治疗DLBCL的可行的抗癌药物。今后的研究应进一步探讨其作用机制,评价其临床应用价值。结论:本研究验证了SJ6986治疗DLBCL的有效性和安全性,并发现其在诱导内质网应激和随后的细胞凋亡中的作用,为DLBCL患者提供了一个有希望的治疗选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Anti-cancer agents in medicinal chemistry
Anti-cancer agents in medicinal chemistry ONCOLOGY-CHEMISTRY, MEDICINAL
CiteScore
5.10
自引率
3.60%
发文量
323
审稿时长
4-8 weeks
期刊介绍: Formerly: Current Medicinal Chemistry - Anti-Cancer Agents. Anti-Cancer Agents in Medicinal Chemistry aims to cover all the latest and outstanding developments in medicinal chemistry and rational drug design for the discovery of anti-cancer agents. Each issue contains a series of timely in-depth reviews and guest edited issues written by leaders in the field covering a range of current topics in cancer medicinal chemistry. The journal only considers high quality research papers for publication. Anti-Cancer Agents in Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments in cancer drug discovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信