{"title":"Modeling Enzyme Temperature Stability from Sequence Segment Perspective.","authors":"Ziqi Zhang, Shiheng Chen, Runze Yang, Zhisheng Wei, Wei Zhang, Lei Wang, Zhanzhi Liu, Fengshan Zhang, Jing Wu, Xiaoyong Pan, Hongbin Shen, Longbing Cao, Zhaohong Deng","doi":"10.1021/acs.jcim.5c01674","DOIUrl":null,"url":null,"abstract":"<p><p>Developing enzymes with desired thermal properties is crucial for a wide range of industrial and research applications, and determining temperature stability is an essential step in this process. Experimental determination of thermal parameters is labor-intensive, time-consuming, and costly. Moreover, existing computational approaches are often hindered by limited data availability and imbalanced distributions. To address these challenges, we introduce a curated temperature stability data set designed for model development and benchmarking in enzyme thermal modeling. Leveraging this data set, we present the <i>Segment Transformer</i>, a novel deep learning framework that enables efficient and accurate prediction of enzyme temperature stability. The model achieves state-of-the-art performance with RMSE of 23.29, MAE of 17.37, Pearson correlation of 0.35, and Spearman correlation of 0.34, respectively. These results highlight the effectiveness of incorporating segment-level representations, grounded in the biological observation that different regions of a protein sequence contribute unequally to thermal behavior. As a proof of concept, we applied the Segment Transformer to guide the engineering of a cutinase enzyme. Experimental validation demonstrated a 1.64-fold improvement in relative activity following heat treatment, achieved through only 17 mutations and without compromising catalytic function.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.5c01674","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Developing enzymes with desired thermal properties is crucial for a wide range of industrial and research applications, and determining temperature stability is an essential step in this process. Experimental determination of thermal parameters is labor-intensive, time-consuming, and costly. Moreover, existing computational approaches are often hindered by limited data availability and imbalanced distributions. To address these challenges, we introduce a curated temperature stability data set designed for model development and benchmarking in enzyme thermal modeling. Leveraging this data set, we present the Segment Transformer, a novel deep learning framework that enables efficient and accurate prediction of enzyme temperature stability. The model achieves state-of-the-art performance with RMSE of 23.29, MAE of 17.37, Pearson correlation of 0.35, and Spearman correlation of 0.34, respectively. These results highlight the effectiveness of incorporating segment-level representations, grounded in the biological observation that different regions of a protein sequence contribute unequally to thermal behavior. As a proof of concept, we applied the Segment Transformer to guide the engineering of a cutinase enzyme. Experimental validation demonstrated a 1.64-fold improvement in relative activity following heat treatment, achieved through only 17 mutations and without compromising catalytic function.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.