Default Prediction Framework With Optimal Feature Set and Matching Ratio

IF 2.7 3区 经济学 Q1 ECONOMICS
Guotai Chi, Fengshan Bai, Hongping Tan, Ying Zhou
{"title":"Default Prediction Framework With Optimal Feature Set and Matching Ratio","authors":"Guotai Chi,&nbsp;Fengshan Bai,&nbsp;Hongping Tan,&nbsp;Ying Zhou","doi":"10.1002/for.3284","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We propose a default prediction framework that incorporates imbalance handling and feature selection. For imbalance handling, we determine the optimal ratio of non-default to default firms by minimizing the Type-II error of the majority voting deep fully connected network (MV-DFCN) model. For feature selection, we design a two-stage process that first eliminates highly correlated and redundant features, and then refines the feature set using backward selection. Experimental results show that the DFCN model within the proposed framework outperforms baseline models in terms of G-Mean and AUC and achieves the lowest Type-II error rate. Furthermore, the framework outperforms eight baseline combinations of imbalance handling and feature selection strategies. Additionally, SHAP values are used to assess feature contributions, and nine features with statistically significant impacts are identified.</p>\n </div>","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":"44 7","pages":"2067-2088"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/for.3284","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a default prediction framework that incorporates imbalance handling and feature selection. For imbalance handling, we determine the optimal ratio of non-default to default firms by minimizing the Type-II error of the majority voting deep fully connected network (MV-DFCN) model. For feature selection, we design a two-stage process that first eliminates highly correlated and redundant features, and then refines the feature set using backward selection. Experimental results show that the DFCN model within the proposed framework outperforms baseline models in terms of G-Mean and AUC and achieves the lowest Type-II error rate. Furthermore, the framework outperforms eight baseline combinations of imbalance handling and feature selection strategies. Additionally, SHAP values are used to assess feature contributions, and nine features with statistically significant impacts are identified.

Abstract Image

具有最优特征集和匹配率的默认预测框架
我们提出了一个包含不平衡处理和特征选择的默认预测框架。对于不平衡处理,我们通过最小化多数投票深度全连接网络(MV-DFCN)模型的ii型误差来确定非违约公司与违约公司的最佳比例。对于特征选择,我们设计了一个两阶段的过程,首先消除高度相关和冗余的特征,然后使用反向选择来细化特征集。实验结果表明,该框架下的DFCN模型在G-Mean和AUC方面优于基线模型,并且实现了最低的Type-II错误率。此外,该框架优于8种不平衡处理和特征选择策略的基线组合。此外,SHAP值用于评估特征贡献,并确定了具有统计显著影响的9个特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
5.90%
发文量
91
期刊介绍: The Journal of Forecasting is an international journal that publishes refereed papers on forecasting. It is multidisciplinary, welcoming papers dealing with any aspect of forecasting: theoretical, practical, computational and methodological. A broad interpretation of the topic is taken with approaches from various subject areas, such as statistics, economics, psychology, systems engineering and social sciences, all encouraged. Furthermore, the Journal welcomes a wide diversity of applications in such fields as business, government, technology and the environment. Of particular interest are papers dealing with modelling issues and the relationship of forecasting systems to decision-making processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信