Hybrid Polyacrylamide-ZnO Electron Transport Layers; Enhancing Exciton Recombination and Charge Injection for High-Efficiency QLEDs

IF 7.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jae-Hyeon Ahn, Sinyoung Cho, Dong Hyun Choi, Weon-Sik Chae, Myungkwan Song, Keum-Jin Ko, Jong-Soo Lee
{"title":"Hybrid Polyacrylamide-ZnO Electron Transport Layers; Enhancing Exciton Recombination and Charge Injection for High-Efficiency QLEDs","authors":"Jae-Hyeon Ahn,&nbsp;Sinyoung Cho,&nbsp;Dong Hyun Choi,&nbsp;Weon-Sik Chae,&nbsp;Myungkwan Song,&nbsp;Keum-Jin Ko,&nbsp;Jong-Soo Lee","doi":"10.1002/adom.202500669","DOIUrl":null,"url":null,"abstract":"<p>ZnO nanoparticles (ZnO NPs) are widely utilized as electron transport layers (ETLs) in quantum dot light-emitting diodes (QLEDs) due to their high electron mobility, wide bandgap, excellent transparency, and effective hole blocking properties. However, exciton quenching at the interface between quantum dots (QDs) and ZnO NPs and unfavorable band alignment hinder the performance of QLED devices. In this study, a straightforward and versatile approach is introduced to fabricate high-performance QLED by incorporating Polyacrylamide (polyNIPAM) with ZnO NPs. The resulting QD and hybrid-ZnO NPs films achieved a photoluminescence quantum yield (PLQY) of 57.8% and a recombination rate of 80.07%. Compared to conventional ZnO-based QLEDs, the hybrid approach led to a significant improvement in external quantum efficiency (22.34%), maximum brightness (97 593 cd m<sup>−2</sup>), and a narrow full-width at half maximum (FWHM) of 22.3 nm. The hybrid ZnO NPs exhibited favorable energy levels for electron injection, promoting exciton recombination while minimizing charge diffusion losses at the QD/ZnO NP interfaces. These findings highlight the potential of polyNIPAM-functionalized ZnO NPs for scalable, high-performance QLED fabrication. Future work will focus on optimizing hybrid material composition to further suppress electron leakage and enhance charge transport 1in large-area devices.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 28","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adom.202500669","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

ZnO nanoparticles (ZnO NPs) are widely utilized as electron transport layers (ETLs) in quantum dot light-emitting diodes (QLEDs) due to their high electron mobility, wide bandgap, excellent transparency, and effective hole blocking properties. However, exciton quenching at the interface between quantum dots (QDs) and ZnO NPs and unfavorable band alignment hinder the performance of QLED devices. In this study, a straightforward and versatile approach is introduced to fabricate high-performance QLED by incorporating Polyacrylamide (polyNIPAM) with ZnO NPs. The resulting QD and hybrid-ZnO NPs films achieved a photoluminescence quantum yield (PLQY) of 57.8% and a recombination rate of 80.07%. Compared to conventional ZnO-based QLEDs, the hybrid approach led to a significant improvement in external quantum efficiency (22.34%), maximum brightness (97 593 cd m−2), and a narrow full-width at half maximum (FWHM) of 22.3 nm. The hybrid ZnO NPs exhibited favorable energy levels for electron injection, promoting exciton recombination while minimizing charge diffusion losses at the QD/ZnO NP interfaces. These findings highlight the potential of polyNIPAM-functionalized ZnO NPs for scalable, high-performance QLED fabrication. Future work will focus on optimizing hybrid material composition to further suppress electron leakage and enhance charge transport 1in large-area devices.

Abstract Image

聚丙烯酰胺- zno杂化电子传递层的研究高效qled的激子复合与电荷注入
ZnO纳米粒子(ZnO NPs)由于其高电子迁移率、宽带隙、优异的透明度和有效的空穴阻塞特性,被广泛应用于量子点发光二极管(qled)的电子传输层(ETLs)。然而,量子点(QDs)和ZnO NPs界面的激子猝灭和不利的能带对准阻碍了QLED器件的性能。在这项研究中,介绍了一种简单而通用的方法,通过将聚丙烯酰胺(polyNIPAM)与ZnO NPs结合来制造高性能QLED。所制备的QD和杂化zno NPs薄膜的光致发光量子产率(PLQY)为57.8%,复合率为80.07%。与传统的zno基qled相比,混合方法显著提高了外部量子效率(22.34%),最大亮度(97 593 cd m−2),半峰全宽(FWHM)为22.3 nm。杂化ZnO NPs表现出有利的电子注入能级,促进激子重组,同时最小化QD/ZnO NP界面上的电荷扩散损失。这些发现突出了聚nipam功能化ZnO NPs在可扩展、高性能QLED制造方面的潜力。未来的工作将集中在优化混合材料的组成,以进一步抑制电子泄漏和增强大面积器件中的电荷输运。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Optical Materials
Advanced Optical Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
13.70
自引率
6.70%
发文量
883
审稿时长
1.5 months
期刊介绍: Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信