Jenna B Mendelson,Jacob D Sternbach,Minwoo Kim,Ryan A Moon,Lynn M Hartweck,Sophia R Clark,Walt Tollison,Matthew T Lahti,John P Carney,Todd Markowski,LeeAnn Higgins,Felipe Kazmirczak,Kurt W Prins
{"title":"GP130 Antagonism Enhances Porcine RV Function.","authors":"Jenna B Mendelson,Jacob D Sternbach,Minwoo Kim,Ryan A Moon,Lynn M Hartweck,Sophia R Clark,Walt Tollison,Matthew T Lahti,John P Carney,Todd Markowski,LeeAnn Higgins,Felipe Kazmirczak,Kurt W Prins","doi":"10.1161/circresaha.125.326336","DOIUrl":null,"url":null,"abstract":"BACKGROUND\r\nRight ventricular (RV) dysfunction is a risk factor for death in multiple cardiovascular diseases, but RV-enhancing therapies are lacking. Inhibition of GP130 (glycoprotein-130) signaling with the small molecule SC144 improves RV function in rodent RV dysfunction via anti-inflammatory and metabolic mechanisms. However, SC144's efficacy and molecular effects in a translational large animal model of RV dysfunction are unknown.\r\n\r\nMETHODS\r\nFour-week-old castrated male pigs underwent pulmonary artery banding (PAB). After 3 weeks, PAB pigs were randomized into 2 groups (daily injections of SC144 [2.2 mg/kg, PAB-SC144, n=5] or vehicle [PAB-Veh, n=5] for 3 weeks). Five age-matched pigs served as controls. Cardiac magnetic resonance imaging quantified RV size/function. Right heart catheterization evaluated hemodynamics. Single-nucleus RNA sequencing delineated cell-type-specific changes between experimental groups. Electron microscopy evaluated RV mitochondrial morphology. Phosphoproteomics identified dysregulated RV kinases. Lipidomics and metabolomics quantified lipid species and metabolites in RV tissue and serum. Quantitative proteomics examined RV mitochondrial protein regulation. Confocal microscopy evaluated alterations in cardiomyocyte size, macrophage abundances, capillary density, and pericyte/endothelial cell localization patterns.\r\n\r\nRESULTS\r\nSC144 significantly improved RV ejection fraction (control: 60±4%; PAB-Veh: 22±10%; PAB-SC144: 37±6%) without altering RV afterload. Single-nucleus RNA sequencing demonstrated that PAB-Veh pigs had lower cardiomyocyte and higher macrophage/lymphocyte/pericyte/endothelial cell abundances as compared with control, and many of these changes were blunted by SC144. Immunohistochemistry validated the reduction in RV macrophage infiltration by SC144. Both transcriptomics and proteomics approaches demonstrated that SC144 combatted the downregulation of cardiomyocyte metabolic genes/proteins induced by PAB. Kinome enrichment analysis suggested SC144 counteracted RV mTORC1 (mammalian target of rapamycin complex 1) activation. Correspondingly, SC144 rebalanced the RV autophagy pathway proteins and improved mitochondrial morphology. Integrated lipidomics, metabolomics, and proteomics analyses revealed that SC144 restored fatty acid metabolism. Finally, CellChat analysis, cardiomyocyte RNAseq analysis, and histological examination suggested SC144 rebalanced pericyte-endothelial cell interactions and blunted cardiomyocyte HIF1 (hypoxia-induced factor 1) activation.\r\n\r\nCONCLUSIONS\r\nGP130 antagonism blunts RV immune cell infiltration, reduces proinflammatory gene programs in macrophages and lymphocytes, rebalances autophagy, and preserves fatty acid metabolism in cardiomyocytes, and restores endothelial cell and pericyte homeostasis to mitigate cardiomyocyte hypoxia and ultimately augments RV function.","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":"135 1","pages":""},"PeriodicalIF":16.2000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/circresaha.125.326336","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
BACKGROUND
Right ventricular (RV) dysfunction is a risk factor for death in multiple cardiovascular diseases, but RV-enhancing therapies are lacking. Inhibition of GP130 (glycoprotein-130) signaling with the small molecule SC144 improves RV function in rodent RV dysfunction via anti-inflammatory and metabolic mechanisms. However, SC144's efficacy and molecular effects in a translational large animal model of RV dysfunction are unknown.
METHODS
Four-week-old castrated male pigs underwent pulmonary artery banding (PAB). After 3 weeks, PAB pigs were randomized into 2 groups (daily injections of SC144 [2.2 mg/kg, PAB-SC144, n=5] or vehicle [PAB-Veh, n=5] for 3 weeks). Five age-matched pigs served as controls. Cardiac magnetic resonance imaging quantified RV size/function. Right heart catheterization evaluated hemodynamics. Single-nucleus RNA sequencing delineated cell-type-specific changes between experimental groups. Electron microscopy evaluated RV mitochondrial morphology. Phosphoproteomics identified dysregulated RV kinases. Lipidomics and metabolomics quantified lipid species and metabolites in RV tissue and serum. Quantitative proteomics examined RV mitochondrial protein regulation. Confocal microscopy evaluated alterations in cardiomyocyte size, macrophage abundances, capillary density, and pericyte/endothelial cell localization patterns.
RESULTS
SC144 significantly improved RV ejection fraction (control: 60±4%; PAB-Veh: 22±10%; PAB-SC144: 37±6%) without altering RV afterload. Single-nucleus RNA sequencing demonstrated that PAB-Veh pigs had lower cardiomyocyte and higher macrophage/lymphocyte/pericyte/endothelial cell abundances as compared with control, and many of these changes were blunted by SC144. Immunohistochemistry validated the reduction in RV macrophage infiltration by SC144. Both transcriptomics and proteomics approaches demonstrated that SC144 combatted the downregulation of cardiomyocyte metabolic genes/proteins induced by PAB. Kinome enrichment analysis suggested SC144 counteracted RV mTORC1 (mammalian target of rapamycin complex 1) activation. Correspondingly, SC144 rebalanced the RV autophagy pathway proteins and improved mitochondrial morphology. Integrated lipidomics, metabolomics, and proteomics analyses revealed that SC144 restored fatty acid metabolism. Finally, CellChat analysis, cardiomyocyte RNAseq analysis, and histological examination suggested SC144 rebalanced pericyte-endothelial cell interactions and blunted cardiomyocyte HIF1 (hypoxia-induced factor 1) activation.
CONCLUSIONS
GP130 antagonism blunts RV immune cell infiltration, reduces proinflammatory gene programs in macrophages and lymphocytes, rebalances autophagy, and preserves fatty acid metabolism in cardiomyocytes, and restores endothelial cell and pericyte homeostasis to mitigate cardiomyocyte hypoxia and ultimately augments RV function.
期刊介绍:
Circulation Research is a peer-reviewed journal that serves as a forum for the highest quality research in basic cardiovascular biology. The journal publishes studies that utilize state-of-the-art approaches to investigate mechanisms of human disease, as well as translational and clinical research that provide fundamental insights into the basis of disease and the mechanism of therapies.
Circulation Research has a broad audience that includes clinical and academic cardiologists, basic cardiovascular scientists, physiologists, cellular and molecular biologists, and cardiovascular pharmacologists. The journal aims to advance the understanding of cardiovascular biology and disease by disseminating cutting-edge research to these diverse communities.
In terms of indexing, Circulation Research is included in several prominent scientific databases, including BIOSIS, CAB Abstracts, Chemical Abstracts, Current Contents, EMBASE, and MEDLINE. This ensures that the journal's articles are easily discoverable and accessible to researchers in the field.
Overall, Circulation Research is a reputable publication that attracts high-quality research and provides a platform for the dissemination of important findings in basic cardiovascular biology and its translational and clinical applications.