K Simmy Joseph,Brahmananda Chakraborty,Shweta Dabhi
{"title":"Insights into the oxygen evolution mechanism of transition metal-anchored holey graphyne.","authors":"K Simmy Joseph,Brahmananda Chakraborty,Shweta Dabhi","doi":"10.1039/d5cp02097b","DOIUrl":null,"url":null,"abstract":"Growing worldwide environmental concerns linked to the overuse of fossil fuels and rising energy demands are driving a thorough and comprehensive search for clean, sustainable sources of energy. Water electrolysis has recently become a highly appealing method for achieving optimal energy conversion and storage. This study employs density functional theory to investigate the catalytic performance along with the electronic properties of pristine and adatom-doped transition metal (TMs = Sc, Pt, Co, Cr, and Au)-anchored holey graphyne (HGY). Among all considered candidates, Pt-doped HGY gives the best oxygen evolution reaction (OER) with the overpotential equivalent to 0.74 V. This catalyst is deemed optimal for further exploration of the OER mechanism. Through molecular dynamics (MD) simulations, the structural along with thermal stability of Pt@HGY has been confirmed. The convincing results motivate the use of Pt-anchored HGY as an efficient OER mechanism catalyst.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":"33 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5cp02097b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Growing worldwide environmental concerns linked to the overuse of fossil fuels and rising energy demands are driving a thorough and comprehensive search for clean, sustainable sources of energy. Water electrolysis has recently become a highly appealing method for achieving optimal energy conversion and storage. This study employs density functional theory to investigate the catalytic performance along with the electronic properties of pristine and adatom-doped transition metal (TMs = Sc, Pt, Co, Cr, and Au)-anchored holey graphyne (HGY). Among all considered candidates, Pt-doped HGY gives the best oxygen evolution reaction (OER) with the overpotential equivalent to 0.74 V. This catalyst is deemed optimal for further exploration of the OER mechanism. Through molecular dynamics (MD) simulations, the structural along with thermal stability of Pt@HGY has been confirmed. The convincing results motivate the use of Pt-anchored HGY as an efficient OER mechanism catalyst.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.