Mahboube Sadat Hosseini, Seyyed Mahmoud Reza Aghamiri, Mehdi Panahi
{"title":"Cross-regional radiomics: a novel framework for relationship-based feature extraction with validation in Parkinson's disease motor subtyping.","authors":"Mahboube Sadat Hosseini, Seyyed Mahmoud Reza Aghamiri, Mehdi Panahi","doi":"10.1186/s13040-025-00483-4","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional radiomics approaches focus on single-region feature extraction, limiting their ability to capture complex inter-regional relationships crucial for understanding pathophysiological mechanisms in complex diseases. This study introduces a novel cross-regional radiomics framework that systematically extracts relationship-based features between anatomically and functionally connected brain regions. We analyzed T1-weighted magnetic resonance imaging (MRI) data from 140 early-stage Parkinson's disease patients (70 tremor-dominant, 70 postural instability gait difficulty) from the Parkinson's Progression Markers Initiative (PPMI) database across multiple imaging centers. Eight bilateral motor circuit regions (putamen, caudate nucleus, globus pallidus, substantia nigra) were segmented using standardized atlases. Two feature sets were developed: 48 traditional single-region of interest (ROI) features and 60 novel motor-circuit features capturing cross-regional ratios, asymmetry indices, volumetric relationships, and shape distributions. Six feature engineering scenarios were evaluated using center-based 5-fold cross-validation with six machine learning classifiers to ensure robust generalization across different imaging centers. Motor-circuit features demonstrated superior performance compared to single-ROI features across enhanced preprocessing scenarios. Peak performance was achieved with area under the curve (AUC) of 0.821 ± 0.117 versus 0.650 ± 0.220 for single-ROI features (p = 0.0012, Cohen's d = 0.665). Cross-regional ratios, particularly putamen-substantia nigra relationships, dominated the most discriminative features. Motor-circuit features showed superior generalization across multi-center data and better clinical utility through decision curve analysis and calibration curves. The proposed cross-regional radiomics framework significantly outperforms traditional single-region approaches for Parkinson's disease motor subtype classification. This methodology provides a foundation for advancing radiomics applications in complex diseases where inter-regional connectivity patterns are fundamental to pathophysiology.</p>","PeriodicalId":48947,"journal":{"name":"Biodata Mining","volume":"18 1","pages":"67"},"PeriodicalIF":6.1000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12482597/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodata Mining","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13040-025-00483-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional radiomics approaches focus on single-region feature extraction, limiting their ability to capture complex inter-regional relationships crucial for understanding pathophysiological mechanisms in complex diseases. This study introduces a novel cross-regional radiomics framework that systematically extracts relationship-based features between anatomically and functionally connected brain regions. We analyzed T1-weighted magnetic resonance imaging (MRI) data from 140 early-stage Parkinson's disease patients (70 tremor-dominant, 70 postural instability gait difficulty) from the Parkinson's Progression Markers Initiative (PPMI) database across multiple imaging centers. Eight bilateral motor circuit regions (putamen, caudate nucleus, globus pallidus, substantia nigra) were segmented using standardized atlases. Two feature sets were developed: 48 traditional single-region of interest (ROI) features and 60 novel motor-circuit features capturing cross-regional ratios, asymmetry indices, volumetric relationships, and shape distributions. Six feature engineering scenarios were evaluated using center-based 5-fold cross-validation with six machine learning classifiers to ensure robust generalization across different imaging centers. Motor-circuit features demonstrated superior performance compared to single-ROI features across enhanced preprocessing scenarios. Peak performance was achieved with area under the curve (AUC) of 0.821 ± 0.117 versus 0.650 ± 0.220 for single-ROI features (p = 0.0012, Cohen's d = 0.665). Cross-regional ratios, particularly putamen-substantia nigra relationships, dominated the most discriminative features. Motor-circuit features showed superior generalization across multi-center data and better clinical utility through decision curve analysis and calibration curves. The proposed cross-regional radiomics framework significantly outperforms traditional single-region approaches for Parkinson's disease motor subtype classification. This methodology provides a foundation for advancing radiomics applications in complex diseases where inter-regional connectivity patterns are fundamental to pathophysiology.
期刊介绍:
BioData Mining is an open access, open peer-reviewed journal encompassing research on all aspects of data mining applied to high-dimensional biological and biomedical data, focusing on computational aspects of knowledge discovery from large-scale genetic, transcriptomic, genomic, proteomic, and metabolomic data.
Topical areas include, but are not limited to:
-Development, evaluation, and application of novel data mining and machine learning algorithms.
-Adaptation, evaluation, and application of traditional data mining and machine learning algorithms.
-Open-source software for the application of data mining and machine learning algorithms.
-Design, development and integration of databases, software and web services for the storage, management, retrieval, and analysis of data from large scale studies.
-Pre-processing, post-processing, modeling, and interpretation of data mining and machine learning results for biological interpretation and knowledge discovery.