Alan M Moses, Jason E Stajich, Audrey P Gasch, David A Knowles
{"title":"Inferring fungal cis-regulatory networks from genome sequences via unsupervised and interpretable representation learning.","authors":"Alan M Moses, Jason E Stajich, Audrey P Gasch, David A Knowles","doi":"10.1093/genetics/iyaf209","DOIUrl":null,"url":null,"abstract":"<p><p>Gene expression patterns are determined to a large extent by transcription factor binding to non-coding regulatory regions in the genome. However, gene expression cannot yet be systematically predicted from genome sequences, in part because non-functional matches to the sequence patterns (motifs) recognized by transcription factors (TFs) occur frequently throughout the genome. Large-scale functional genomics data for many TFs has enabled characterization of regulatory networks in experimentally accessible cells such as budding yeast. Beyond yeast, fungi are important industrial organisms and pathogens, but large-scale functional data is only sporadically available. Uncharacterized regulatory networks control key pathways and gene expression programs associated with fungal phenotypes. Here we explore a sequence-only approach to inferring regulatory networks by leveraging the 100s of genomes now available for many clades of fungi. We use gene orthology as the learning signal to infer interpretable, TF motif-based representations of non-coding regulatory regions. Using these representations to identify conserved signals for motifs, comparative genomics can be scaled to evolutionary comparisons where sequence similarity cannot be detected. We show that similarity of these conserved motif signals predicts gene expression and regulation better than using experimental data, and that we can infer known and novel regulatory connections in diverse fungi. Our new predictions include a pathway for recombination in C. albicans and pathways for mating and an RNAi immune response in Neurospora. Taken together, our results indicate that specific hypotheses about transcriptional regulation in fungi can be obtained for many genes from genome sequence analysis alone.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyaf209","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Gene expression patterns are determined to a large extent by transcription factor binding to non-coding regulatory regions in the genome. However, gene expression cannot yet be systematically predicted from genome sequences, in part because non-functional matches to the sequence patterns (motifs) recognized by transcription factors (TFs) occur frequently throughout the genome. Large-scale functional genomics data for many TFs has enabled characterization of regulatory networks in experimentally accessible cells such as budding yeast. Beyond yeast, fungi are important industrial organisms and pathogens, but large-scale functional data is only sporadically available. Uncharacterized regulatory networks control key pathways and gene expression programs associated with fungal phenotypes. Here we explore a sequence-only approach to inferring regulatory networks by leveraging the 100s of genomes now available for many clades of fungi. We use gene orthology as the learning signal to infer interpretable, TF motif-based representations of non-coding regulatory regions. Using these representations to identify conserved signals for motifs, comparative genomics can be scaled to evolutionary comparisons where sequence similarity cannot be detected. We show that similarity of these conserved motif signals predicts gene expression and regulation better than using experimental data, and that we can infer known and novel regulatory connections in diverse fungi. Our new predictions include a pathway for recombination in C. albicans and pathways for mating and an RNAi immune response in Neurospora. Taken together, our results indicate that specific hypotheses about transcriptional regulation in fungi can be obtained for many genes from genome sequence analysis alone.
期刊介绍:
GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work.
While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal.
The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists.
GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.