Virginia Fregona, Ilaria Bottini, Sara Barati, Amedeo Cervo, Antonio Macera, Ghil Schwarz, Guglielmo Pero, Mariangela Piano, Gabriele Dubini, Jose Felix Rodriguez Matas, Giulia Luraghi, Francesco Migliavacca
{"title":"Clinical image analysis to build patient-specific models of acute ischemic stroke patients.","authors":"Virginia Fregona, Ilaria Bottini, Sara Barati, Amedeo Cervo, Antonio Macera, Ghil Schwarz, Guglielmo Pero, Mariangela Piano, Gabriele Dubini, Jose Felix Rodriguez Matas, Giulia Luraghi, Francesco Migliavacca","doi":"10.1007/s13246-025-01646-7","DOIUrl":null,"url":null,"abstract":"<p><p>Mechanical thrombectomy (MT) is an emergency treatment for acute ischemic stroke (AIS) to remove a clot occluding a large cerebral vessel. Histological analysis on retrieved thrombi have shown that they are mainly composed of red blood cells (RBCs), platelets and fibrin, and the outcome of MT appears to be influenced by clot composition. Therefore, being able to predict clot composition from routine medical images used for AIS diagnosis could support the choice of interventional strategy. Along with that, finite element simulations of the MT procedure can help provide insights into the impact of the procedural choices, the vessels morphology and the clot characteristics on the MT outcome. To achieve this, a realistic representation of the involved structures is necessary. In this context, this work aimed to (i) develop a methodology for the analysis of routine radiological images aiming at inferring information about clot characteristics (position, length, and composition) and (ii) develop a semi-automatic pipeline to position the clot in the patient-specific reconstructed geometry to build a patient-specific model which could be the starting point for the in silico replica of the MT procedure. However, image analysis alone could not distinguish between white and mixed clots, while a distinction between red and non-red clots was possible. Consequently, histological analyses were used to assign the clot composition, and thus the mechanical properties, in the positioning simulation. The resulting patient-specific model showed a strong similarity with pre-interventional clinical images.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical and Engineering Sciences in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13246-025-01646-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Mechanical thrombectomy (MT) is an emergency treatment for acute ischemic stroke (AIS) to remove a clot occluding a large cerebral vessel. Histological analysis on retrieved thrombi have shown that they are mainly composed of red blood cells (RBCs), platelets and fibrin, and the outcome of MT appears to be influenced by clot composition. Therefore, being able to predict clot composition from routine medical images used for AIS diagnosis could support the choice of interventional strategy. Along with that, finite element simulations of the MT procedure can help provide insights into the impact of the procedural choices, the vessels morphology and the clot characteristics on the MT outcome. To achieve this, a realistic representation of the involved structures is necessary. In this context, this work aimed to (i) develop a methodology for the analysis of routine radiological images aiming at inferring information about clot characteristics (position, length, and composition) and (ii) develop a semi-automatic pipeline to position the clot in the patient-specific reconstructed geometry to build a patient-specific model which could be the starting point for the in silico replica of the MT procedure. However, image analysis alone could not distinguish between white and mixed clots, while a distinction between red and non-red clots was possible. Consequently, histological analyses were used to assign the clot composition, and thus the mechanical properties, in the positioning simulation. The resulting patient-specific model showed a strong similarity with pre-interventional clinical images.