Nephrocast-V: A Deep Learning Model for the Prediction of Vancomycin Trough Concentration Using Electronic Health Record Data.

IF 3.4 3区 医学 Q2 PHARMACOLOGY & PHARMACY
Pharmacotherapy Pub Date : 2025-09-30 DOI:10.1002/phar.70062
Ghodsieh Ghanbari, Craig Stevens, Eliah Aronoff-Spencer, Atul Malhotra, Shamim Nemati, Zaid Yousif
{"title":"Nephrocast-V: A Deep Learning Model for the Prediction of Vancomycin Trough Concentration Using Electronic Health Record Data.","authors":"Ghodsieh Ghanbari, Craig Stevens, Eliah Aronoff-Spencer, Atul Malhotra, Shamim Nemati, Zaid Yousif","doi":"10.1002/phar.70062","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Vancomycin is a critical antibiotic for treating methicillin-resistant Staphylococcus aureus and other gram-positive bacterial infections, but achieving and maintaining therapeutic trough concentrations is challenging.</p><p><strong>Objectives: </strong>We hypothesized that a deep learning model could accurately predict vancomycin trough concentrations 2 days in advance in critically ill patients and provide recommendations for optimal dosing adjustments to achieve target drug concentrations.</p><p><strong>Methods: </strong>We trained and validated the model using electronic health record (EHR) data from adults admitted to the University of California San Diego Health system intensive care units (ICUs) from January 1, 2016, to June 30, 2024. Features included patient demographics, comorbidities, vital signs, laboratory measurements, medications, and vancomycin dosing information. The model architecture combined Long Short-Term Memory and Multi-Head Attention layers, supplemented with skip connections to incorporate past dosage information at the final layer of the deep learning model. Model performance was evaluated using mean absolute error (MAE) and root mean square error (RMSE) metrics.</p><p><strong>Results: </strong>A total of 2205 encounters met the eligibility criteria. The median age was 57 years, and the median ICU length of stay was 4.9 days. The model achieved an MAE of 3.15 mg/L and an RMSE of 4.17 mg/L, comparable to that of a critical care pharmacist aided by a Bayesian dosing software. Additionally, deviations from patient-specific model-based dose recommendations were generally associated with nontherapeutic vancomycin levels.</p><p><strong>Conclusion: </strong>This study demonstrates the potential to leverage deep learning to individualize and support vancomycin therapeutic drug monitoring in critically ill patients.</p>","PeriodicalId":20013,"journal":{"name":"Pharmacotherapy","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacotherapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/phar.70062","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Vancomycin is a critical antibiotic for treating methicillin-resistant Staphylococcus aureus and other gram-positive bacterial infections, but achieving and maintaining therapeutic trough concentrations is challenging.

Objectives: We hypothesized that a deep learning model could accurately predict vancomycin trough concentrations 2 days in advance in critically ill patients and provide recommendations for optimal dosing adjustments to achieve target drug concentrations.

Methods: We trained and validated the model using electronic health record (EHR) data from adults admitted to the University of California San Diego Health system intensive care units (ICUs) from January 1, 2016, to June 30, 2024. Features included patient demographics, comorbidities, vital signs, laboratory measurements, medications, and vancomycin dosing information. The model architecture combined Long Short-Term Memory and Multi-Head Attention layers, supplemented with skip connections to incorporate past dosage information at the final layer of the deep learning model. Model performance was evaluated using mean absolute error (MAE) and root mean square error (RMSE) metrics.

Results: A total of 2205 encounters met the eligibility criteria. The median age was 57 years, and the median ICU length of stay was 4.9 days. The model achieved an MAE of 3.15 mg/L and an RMSE of 4.17 mg/L, comparable to that of a critical care pharmacist aided by a Bayesian dosing software. Additionally, deviations from patient-specific model-based dose recommendations were generally associated with nontherapeutic vancomycin levels.

Conclusion: This study demonstrates the potential to leverage deep learning to individualize and support vancomycin therapeutic drug monitoring in critically ill patients.

Nephrocast-V:利用电子健康记录数据预测万古霉素谷浓度的深度学习模型。
万古霉素是治疗耐甲氧西林金黄色葡萄球菌和其他革兰氏阳性细菌感染的关键抗生素,但实现和维持治疗谷浓度具有挑战性。目的:我们假设深度学习模型可以提前2天准确预测危重患者万古霉素谷底浓度,并提供最佳剂量调整建议,以达到目标药物浓度。方法:我们使用2016年1月1日至2024年6月30日在加州大学圣地亚哥分校卫生系统重症监护病房(icu)入住的成人电子健康记录(EHR)数据对模型进行训练和验证。特征包括患者人口统计、合并症、生命体征、实验室测量、药物和万古霉素剂量信息。该模型架构结合了长短期记忆层和多头注意层,并在深度学习模型的最后一层补充了跳跃连接,以纳入过去的剂量信息。使用平均绝对误差(MAE)和均方根误差(RMSE)指标评估模型性能。结果:共有2205例患者符合入选标准。患者年龄中位数为57岁,ICU住院时间中位数为4.9天。该模型的MAE为3.15 mg/L, RMSE为4.17 mg/L,与贝叶斯给药软件辅助下的重症监护药剂师相当。此外,偏离基于患者特异性模型的剂量建议通常与非治疗性万古霉素水平有关。结论:本研究证明了利用深度学习来个性化和支持危重患者万古霉素治疗药物监测的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pharmacotherapy
Pharmacotherapy 医学-药学
CiteScore
7.80
自引率
2.40%
发文量
93
审稿时长
4-8 weeks
期刊介绍: Pharmacotherapy is devoted to publication of original research articles on all aspects of human pharmacology and review articles on drugs and drug therapy. The Editors and Editorial Board invite original research reports on pharmacokinetic, bioavailability, and drug interaction studies, clinical trials, investigations of specific pharmacological properties of drugs, and related topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信