Zhiming Li, Shenghui Li, Chongyin Han, Yuxiao Chen, Hefu Zhen, Yuzhe Sun, Xiaofeng Zhou, Yanmei Chen, Yan Zheng, Lianyi Han, Jean Krutmann, Chao Nie, Jiucun Wang, Jingjing Xia
{"title":"A comprehensive reference catalog of human skin DNA virome reveals novel viral diversity and microenvironmental influences.","authors":"Zhiming Li, Shenghui Li, Chongyin Han, Yuxiao Chen, Hefu Zhen, Yuzhe Sun, Xiaofeng Zhou, Yanmei Chen, Yan Zheng, Lianyi Han, Jean Krutmann, Chao Nie, Jiucun Wang, Jingjing Xia","doi":"10.1128/spectrum.01178-25","DOIUrl":null,"url":null,"abstract":"<p><p>Human skin serves as a dynamic habitat for a diverse microbiome, including a complex array of viruses whose diversity and roles are not fully understood. A total of 2,760 skin metagenomes from 6 published skin studies were collected. A skin virome catalog was constructed using standard methods in the viromics field. Viral characteristics were identified through cross-cohort meta-analysis and used to characterize viral features across different skin environments. We identified 20,927 viral sequences, which clustered into 2,873 viral operational taxonomic units (vOTUs), uncovering a substantial breadth of viral diversity on human skin. The results also highlight significant differences in viral communities that are associated with varying skin microenvironments. The oily skin is enriched in <i>Papillomaviridae</i>, the dry skin area is enriched in <i>Autographiviridae</i> and <i>Inoviridae</i>, and the moist skin is enriched in <i>Herelleviridae</i>. We also investigated the relationship between bacteriophages and bacteria on the skin surface. We found that skin bacteria such as <i>Pseudomonas</i>, <i>Klebsiella</i>, and <i>Staphylococcus</i> are predicted to be infected by phages from the class <i>Caudoviricetes</i>. This comprehensive skin DNA viral catalog significantly advances our understanding of the virome's role within the skin ecosystem.</p><p><strong>Importance: </strong>This study presents a comprehensive reference catalog of the human skin DNA virome, constructed from 2,760 metagenomic datasets collected globally. It identified 20,927 viral sequences, with 90.85% representing previously unknown viruses, greatly expanding our understanding of skin viral diversity. The findings reveal significant differences in viral communities between distinct skin microenvironments (oily, dry, and moist) and highlight close interactions between bacteriophages and their bacterial hosts, suggesting a potential role for the virome in maintaining microbial balance and skin health. This extensive skin viral catalog constitutes a crucial resource for future epidemiological and therapeutic research, potentially facilitating the development of novel phage therapies and diagnostic markers for skin disorders.</p>","PeriodicalId":18670,"journal":{"name":"Microbiology spectrum","volume":" ","pages":"e0117825"},"PeriodicalIF":3.8000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology spectrum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/spectrum.01178-25","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Human skin serves as a dynamic habitat for a diverse microbiome, including a complex array of viruses whose diversity and roles are not fully understood. A total of 2,760 skin metagenomes from 6 published skin studies were collected. A skin virome catalog was constructed using standard methods in the viromics field. Viral characteristics were identified through cross-cohort meta-analysis and used to characterize viral features across different skin environments. We identified 20,927 viral sequences, which clustered into 2,873 viral operational taxonomic units (vOTUs), uncovering a substantial breadth of viral diversity on human skin. The results also highlight significant differences in viral communities that are associated with varying skin microenvironments. The oily skin is enriched in Papillomaviridae, the dry skin area is enriched in Autographiviridae and Inoviridae, and the moist skin is enriched in Herelleviridae. We also investigated the relationship between bacteriophages and bacteria on the skin surface. We found that skin bacteria such as Pseudomonas, Klebsiella, and Staphylococcus are predicted to be infected by phages from the class Caudoviricetes. This comprehensive skin DNA viral catalog significantly advances our understanding of the virome's role within the skin ecosystem.
Importance: This study presents a comprehensive reference catalog of the human skin DNA virome, constructed from 2,760 metagenomic datasets collected globally. It identified 20,927 viral sequences, with 90.85% representing previously unknown viruses, greatly expanding our understanding of skin viral diversity. The findings reveal significant differences in viral communities between distinct skin microenvironments (oily, dry, and moist) and highlight close interactions between bacteriophages and their bacterial hosts, suggesting a potential role for the virome in maintaining microbial balance and skin health. This extensive skin viral catalog constitutes a crucial resource for future epidemiological and therapeutic research, potentially facilitating the development of novel phage therapies and diagnostic markers for skin disorders.
期刊介绍:
Microbiology Spectrum publishes commissioned review articles on topics in microbiology representing ten content areas: Archaea; Food Microbiology; Bacterial Genetics, Cell Biology, and Physiology; Clinical Microbiology; Environmental Microbiology and Ecology; Eukaryotic Microbes; Genomics, Computational, and Synthetic Microbiology; Immunology; Pathogenesis; and Virology. Reviews are interrelated, with each review linking to other related content. A large board of Microbiology Spectrum editors aids in the development of topics for potential reviews and in the identification of an editor, or editors, who shepherd each collection.