Phosphoproteomics of osimertinib-tolerant persister cells reveals targetable kinase-substrate signatures.

IF 7.7 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Hsiang-En Hsu, Matthew J Martin, Shao-Hsing Weng, Reta Birhanu Kitata, Srikar Nagelli, Chiung-Yun Chang, Sonja Hess, Yu-Ju Chen
{"title":"Phosphoproteomics of osimertinib-tolerant persister cells reveals targetable kinase-substrate signatures.","authors":"Hsiang-En Hsu, Matthew J Martin, Shao-Hsing Weng, Reta Birhanu Kitata, Srikar Nagelli, Chiung-Yun Chang, Sonja Hess, Yu-Ju Chen","doi":"10.1038/s44320-025-00141-1","DOIUrl":null,"url":null,"abstract":"<p><p>Osimertinib is the first-line therapy for EGFR-mutated non-small cell lung cancer, but acquired resistance emerges in most patients and remains a major barrier for complete cure. This phenomenon is most likely associated with the drug-tolerant persister (DTP) cell phenotype, a reversible state that enables survival under treatment and leads to irreversible drug resistance. To uncover the molecular mechanism driving this distinct phenotype, we applied data-independent acquisition mass spectrometry (DIA-MS) to establish the dynamic proteomic and phosphoproteomic landscape in the osimertinib DTPs. While osimertinib initially blocks EGFR signaling, ribosome synthesis and protein translation related pathways arise in DTP phase, and resistance developed through the reactivation of EGFR downstream pathways and anti-apoptotic mechanisms such as YAP1 and mTOR-BAD hyperphosphorylation, as validated by growth combination assays. Kinase enrichment revealed elevated phosphorylation of multiple CDK1 substrates in DTP phase and pharmacological or genetic inhibition of CDK1-mediated SAMHD1 activation significantly impair DTP growth and survival. This study illuminates the dynamic landscape underlying the DTPs biology and identifies biomarker and new targets to potentially prevent or delay the onset of resistance.</p>","PeriodicalId":18906,"journal":{"name":"Molecular Systems Biology","volume":" ","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44320-025-00141-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Osimertinib is the first-line therapy for EGFR-mutated non-small cell lung cancer, but acquired resistance emerges in most patients and remains a major barrier for complete cure. This phenomenon is most likely associated with the drug-tolerant persister (DTP) cell phenotype, a reversible state that enables survival under treatment and leads to irreversible drug resistance. To uncover the molecular mechanism driving this distinct phenotype, we applied data-independent acquisition mass spectrometry (DIA-MS) to establish the dynamic proteomic and phosphoproteomic landscape in the osimertinib DTPs. While osimertinib initially blocks EGFR signaling, ribosome synthesis and protein translation related pathways arise in DTP phase, and resistance developed through the reactivation of EGFR downstream pathways and anti-apoptotic mechanisms such as YAP1 and mTOR-BAD hyperphosphorylation, as validated by growth combination assays. Kinase enrichment revealed elevated phosphorylation of multiple CDK1 substrates in DTP phase and pharmacological or genetic inhibition of CDK1-mediated SAMHD1 activation significantly impair DTP growth and survival. This study illuminates the dynamic landscape underlying the DTPs biology and identifies biomarker and new targets to potentially prevent or delay the onset of resistance.

耐奥西替尼持久性细胞的磷酸化蛋白质组学揭示了靶向激酶底物特征。
奥西替尼是egfr突变的非小细胞肺癌的一线治疗药物,但获得性耐药在大多数患者中出现,仍然是完全治愈的主要障碍。这种现象很可能与耐药持久性(DTP)细胞表型有关,这是一种可逆状态,可以在治疗下存活,并导致不可逆的耐药性。为了揭示驱动这种独特表型的分子机制,我们应用数据独立获取质谱法(DIA-MS)建立了奥希替尼dtp的动态蛋白质组学和磷酸化蛋白质组学景观。虽然奥西替尼最初阻断EGFR信号传导,但在DTP期会出现核糖体合成和蛋白质翻译相关途径,并通过EGFR下游途径的再激活和抗凋亡机制(如YAP1和mTOR-BAD过磷酸化)产生耐药性,这一点得到了生长组合试验的验证。激酶富集表明,DTP期多种CDK1底物磷酸化升高,CDK1介导的SAMHD1激活的药理学或遗传抑制显著损害DTP的生长和存活。这项研究阐明了dtp生物学的动态景观,并确定了潜在的生物标志物和新的靶点,以预防或延迟耐药的发生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Systems Biology
Molecular Systems Biology 生物-生化与分子生物学
CiteScore
18.50
自引率
1.00%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Systems biology is a field that aims to understand complex biological systems by studying their components and how they interact. It is an integrative discipline that seeks to explain the properties and behavior of these systems. Molecular Systems Biology is a scholarly journal that publishes top-notch research in the areas of systems biology, synthetic biology, and systems medicine. It is an open access journal, meaning that its content is freely available to readers, and it is peer-reviewed to ensure the quality of the published work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信