Radovan Tomasik, Simon Konar, Niina Eklund, Cäcilia Engels, Zdenka Dudova, Radoslava Kacova, Roman Hrstka, Petr Holub
{"title":"Definitions to data flow: Operationalizing MIABIS in HL7 FHIR.","authors":"Radovan Tomasik, Simon Konar, Niina Eklund, Cäcilia Engels, Zdenka Dudova, Radoslava Kacova, Roman Hrstka, Petr Holub","doi":"10.1016/j.jbi.2025.104919","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Biobanks and biomolecular resources are increasingly central to data-driven biomedical research, encompassing not only metadata but also granular, sample-related data from diverse sources such as healthcare systems, national registries, and research outputs. However, the lack of a standardised, machine-readable format for representing such data limits interoperability, data reuse and integration into clinical and research environments. While MIABIS provides a conceptual model for biobank data, its abstract nature and reliance on heterogeneous implementations create barriers to practical, scalable adoption. This study presents a pragmatic, operational implementation of MIABIS focused on enabling real-world exchange and integration of sample-level data.</p><p><strong>Methods: </strong>We systematically evaluated established data exchange standards, comparing HL7 FHIR and OMOP CDM with respect to their suitability for structuring sample-related data in a semantically robust and machine-readable form. Based on this analysis, we developed a FHIR-based representation of MIABIS that supports complex biobank structures and enables integration with federated data infrastructures. Supporting tools, including a Python library and an implementation guide, were created to ensure usability across diverse research and clinical contexts.</p><p><strong>Results: </strong>We created nine interoperable FHIR profiles covering core MIABIS entities, ensuring consistency with FHIR standards. To support adoption, we developed an open-source Python library that abstracts FHIR interactions and provides schema validation for MIABIS-compliant data. The library was integrated into an ETL tool in operation at Czech Node of BBMRI-ERIC, European Biobanking and Biomolecular Resources Research Infrastructure, to demonstrate usability with real-world sample-related data. Separately, we validated the representation of MIABIS entities at the organisational level by converting the data structures of BBMRI-ERIC Directory into FHIR, demonstrating compatibility with federated data infrastructures.</p><p><strong>Conclusion: </strong>This work delivers a machine-readable, interoperable implementation of MIABIS, enabling the exchange of both organisational and sample-level data across biobanks and health information systems. By integrating MIABIS with HL7 FHIR, we provide a host of reusable tools and mechanisms for further evolution of the data model. Combined, these benefits can help with the integration into clinical and research workflows, supporting data discoverability, reuse, and cross-institutional collaboration in biomedical research.</p>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":" ","pages":"104919"},"PeriodicalIF":4.5000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jbi.2025.104919","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Biobanks and biomolecular resources are increasingly central to data-driven biomedical research, encompassing not only metadata but also granular, sample-related data from diverse sources such as healthcare systems, national registries, and research outputs. However, the lack of a standardised, machine-readable format for representing such data limits interoperability, data reuse and integration into clinical and research environments. While MIABIS provides a conceptual model for biobank data, its abstract nature and reliance on heterogeneous implementations create barriers to practical, scalable adoption. This study presents a pragmatic, operational implementation of MIABIS focused on enabling real-world exchange and integration of sample-level data.
Methods: We systematically evaluated established data exchange standards, comparing HL7 FHIR and OMOP CDM with respect to their suitability for structuring sample-related data in a semantically robust and machine-readable form. Based on this analysis, we developed a FHIR-based representation of MIABIS that supports complex biobank structures and enables integration with federated data infrastructures. Supporting tools, including a Python library and an implementation guide, were created to ensure usability across diverse research and clinical contexts.
Results: We created nine interoperable FHIR profiles covering core MIABIS entities, ensuring consistency with FHIR standards. To support adoption, we developed an open-source Python library that abstracts FHIR interactions and provides schema validation for MIABIS-compliant data. The library was integrated into an ETL tool in operation at Czech Node of BBMRI-ERIC, European Biobanking and Biomolecular Resources Research Infrastructure, to demonstrate usability with real-world sample-related data. Separately, we validated the representation of MIABIS entities at the organisational level by converting the data structures of BBMRI-ERIC Directory into FHIR, demonstrating compatibility with federated data infrastructures.
Conclusion: This work delivers a machine-readable, interoperable implementation of MIABIS, enabling the exchange of both organisational and sample-level data across biobanks and health information systems. By integrating MIABIS with HL7 FHIR, we provide a host of reusable tools and mechanisms for further evolution of the data model. Combined, these benefits can help with the integration into clinical and research workflows, supporting data discoverability, reuse, and cross-institutional collaboration in biomedical research.
期刊介绍:
The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.