Heme and lithospermic acid synergistically inhibit aggregation of human islet amyloid polypeptide: A novel hIAPP inhibitor for the potential therapy of type 2 diabetes
Bin Xiao, Junhao Xiao, Xiaoying Xiao, Sisi Liu, Hongmei Chen, Shengping Dai, Yan Sui, Huixian Ye
{"title":"Heme and lithospermic acid synergistically inhibit aggregation of human islet amyloid polypeptide: A novel hIAPP inhibitor for the potential therapy of type 2 diabetes","authors":"Bin Xiao, Junhao Xiao, Xiaoying Xiao, Sisi Liu, Hongmei Chen, Shengping Dai, Yan Sui, Huixian Ye","doi":"10.1016/j.jinorgbio.2025.113087","DOIUrl":null,"url":null,"abstract":"<div><div>Amyloid deposition of human islet amyloid polypeptide (hIAPP) is closely linked to the pathogenesis and progression of type 2 diabetes mellitus (T2DM). Developing effective inhibitors to suppress hIAPP aggregation holds significant therapeutic potential for the prevention and treatment of T2DM. Recent researches indicate that both heme and lithospermic acid (LPA) can inhibit hIAPP aggregation. However, heme is prone to induce protein damage under oxidative stress, while LPA exhibits limited inhibitory efficacy despite its antioxidant properties. To overcome these limitations, we aimed to develop a dual-component inhibitor comprising heme and LPA. thioflavin T (ThT) fluorescence, transmission electron microscopy (TEM), circular dichroism (CD) and gel electrophoresis were combined to observe the inhibitory efficacy of heme-LPA co-formulation on hIAPP aggregation. The results demonstrate that LPA and heme can synergistically inhibit hIAPP aggregation. The inhibitory effect of heme-LPA co-formulation on hIAPP aggregation is significantly stronger than that of either component alone. The heme-LPA not only prevents the complete conversion of hIAPP into β-sheet fibrillar structures but also maintains its active monomeric conformation for extended periods. Furthermore, peroxidase activity assays revealed that the presence of LPA significantly reduces the peroxidase activity of heme in a concentration-dependent manner and attenuates peptide nitration damage under H₂O₂-NO₂<sup>−</sup> oxidative stress. At a heme-to-LPA ratio of 1:4, peptide nitration bands were virtually undetectable. These findings indicate that the dual-component inhibitor heme-LPA represents an efficient and safe strategy for inhibiting hIAPP aggregation. This research provides an important avenue for developing novel anti-hIAPP aggregation inhibitors for the prevention and treatment of T2DM.</div></div>","PeriodicalId":364,"journal":{"name":"Journal of Inorganic Biochemistry","volume":"274 ","pages":"Article 113087"},"PeriodicalIF":3.2000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inorganic Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0162013425002673","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Amyloid deposition of human islet amyloid polypeptide (hIAPP) is closely linked to the pathogenesis and progression of type 2 diabetes mellitus (T2DM). Developing effective inhibitors to suppress hIAPP aggregation holds significant therapeutic potential for the prevention and treatment of T2DM. Recent researches indicate that both heme and lithospermic acid (LPA) can inhibit hIAPP aggregation. However, heme is prone to induce protein damage under oxidative stress, while LPA exhibits limited inhibitory efficacy despite its antioxidant properties. To overcome these limitations, we aimed to develop a dual-component inhibitor comprising heme and LPA. thioflavin T (ThT) fluorescence, transmission electron microscopy (TEM), circular dichroism (CD) and gel electrophoresis were combined to observe the inhibitory efficacy of heme-LPA co-formulation on hIAPP aggregation. The results demonstrate that LPA and heme can synergistically inhibit hIAPP aggregation. The inhibitory effect of heme-LPA co-formulation on hIAPP aggregation is significantly stronger than that of either component alone. The heme-LPA not only prevents the complete conversion of hIAPP into β-sheet fibrillar structures but also maintains its active monomeric conformation for extended periods. Furthermore, peroxidase activity assays revealed that the presence of LPA significantly reduces the peroxidase activity of heme in a concentration-dependent manner and attenuates peptide nitration damage under H₂O₂-NO₂− oxidative stress. At a heme-to-LPA ratio of 1:4, peptide nitration bands were virtually undetectable. These findings indicate that the dual-component inhibitor heme-LPA represents an efficient and safe strategy for inhibiting hIAPP aggregation. This research provides an important avenue for developing novel anti-hIAPP aggregation inhibitors for the prevention and treatment of T2DM.
期刊介绍:
The Journal of Inorganic Biochemistry is an established international forum for research in all aspects of Biological Inorganic Chemistry. Original papers of a high scientific level are published in the form of Articles (full length papers), Short Communications, Focused Reviews and Bioinorganic Methods. Topics include: the chemistry, structure and function of metalloenzymes; the interaction of inorganic ions and molecules with proteins and nucleic acids; the synthesis and properties of coordination complexes of biological interest including both structural and functional model systems; the function of metal- containing systems in the regulation of gene expression; the role of metals in medicine; the application of spectroscopic methods to determine the structure of metallobiomolecules; the preparation and characterization of metal-based biomaterials; and related systems. The emphasis of the Journal is on the structure and mechanism of action of metallobiomolecules.