Unveiling the Synergistic and Perforation-Dominant Self-Assembly Mechanisms of Supramolecular Chiral Helical Microtoroids

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Li-Li Han, , , Yu-Wei Sun, , and , Zhan-Wei Li*, 
{"title":"Unveiling the Synergistic and Perforation-Dominant Self-Assembly Mechanisms of Supramolecular Chiral Helical Microtoroids","authors":"Li-Li Han,&nbsp;, ,&nbsp;Yu-Wei Sun,&nbsp;, and ,&nbsp;Zhan-Wei Li*,&nbsp;","doi":"10.1021/jacs.5c12969","DOIUrl":null,"url":null,"abstract":"<p >Supramolecular assemblies with chiral helical structures play pivotal roles in biological systems, molecular sensing, chiral nanomaterials, and optoelectronic devices. Understanding the formation mechanisms of such chiral assemblies is essential for the rational design and precise control of their morphologies and functions. However, the complex noncovalent interactions and multiscale assembly pathways pose significant challenges to unveiling the underlying mechanisms. Herein, we introduce a generic patchy-ellipsoid-chain model that enables efficient coarse-grained molecular dynamics simulations to elucidate the assembly kinetics of supramolecular chiral helical microtoroids. Our simulations reveal that the formation of chiral helical microtoroids arises from the synergistic interplay of molecular chirality, directional noncovalent interactions, and solvophobic effects, proceeding through two distinct kinetic pathways: perforation and cyclization. Notably, the perforation pathway predominates due to energetically favorable π–π stacking interactions. This work provides both a robust modeling framework and mechanistic insights into supramolecular chiral self-assembly, offering rational strategies for the design of tailored supramolecular chiral structures.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"147 40","pages":"36793–36804"},"PeriodicalIF":15.6000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.5c12969","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Supramolecular assemblies with chiral helical structures play pivotal roles in biological systems, molecular sensing, chiral nanomaterials, and optoelectronic devices. Understanding the formation mechanisms of such chiral assemblies is essential for the rational design and precise control of their morphologies and functions. However, the complex noncovalent interactions and multiscale assembly pathways pose significant challenges to unveiling the underlying mechanisms. Herein, we introduce a generic patchy-ellipsoid-chain model that enables efficient coarse-grained molecular dynamics simulations to elucidate the assembly kinetics of supramolecular chiral helical microtoroids. Our simulations reveal that the formation of chiral helical microtoroids arises from the synergistic interplay of molecular chirality, directional noncovalent interactions, and solvophobic effects, proceeding through two distinct kinetic pathways: perforation and cyclization. Notably, the perforation pathway predominates due to energetically favorable π–π stacking interactions. This work provides both a robust modeling framework and mechanistic insights into supramolecular chiral self-assembly, offering rational strategies for the design of tailored supramolecular chiral structures.

Abstract Image

揭示超分子手性螺旋微环的协同和穿孔优势自组装机制。
具有手性螺旋结构的超分子组件在生物系统、分子传感、手性纳米材料和光电子器件等领域发挥着重要作用。了解这些手性组装体的形成机制对于合理设计和精确控制其形态和功能至关重要。然而,复杂的非共价相互作用和多尺度组装途径对揭示潜在机制提出了重大挑战。在此,我们引入了一个通用的斑块-椭球链模型,该模型能够实现有效的粗粒度分子动力学模拟,以阐明超分子手性螺旋微环的组装动力学。我们的模拟表明,手性螺旋微环的形成源于分子手性、定向非共价相互作用和疏溶剂效应的协同相互作用,通过两种不同的动力学途径进行:穿孔和环化。值得注意的是,由于能量有利的π-π堆叠相互作用,穿孔途径占主导地位。这项工作为超分子手性自组装提供了一个强大的建模框架和机制见解,为定制超分子手性结构的设计提供了合理的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信