Revisiting the ion dynamics in LixCoO2 and NaxCoO2

IF 7.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ryoichi Tatara, Daisuke Igarashi, Masanobu Nakayama, Tomooki Hosaka, Kazuki Ohishi, Izumi Umegaki, Jumpei G. Nakamura, Akihiro Koda, Hiroto Ohta, Rasmus Palm, Martin Månsson, Eun Jeong Kim, Kei Kubota, Jun Sugiyama, Shinichi Komaba
{"title":"Revisiting the ion dynamics in LixCoO2 and NaxCoO2","authors":"Ryoichi Tatara, Daisuke Igarashi, Masanobu Nakayama, Tomooki Hosaka, Kazuki Ohishi, Izumi Umegaki, Jumpei G. Nakamura, Akihiro Koda, Hiroto Ohta, Rasmus Palm, Martin Månsson, Eun Jeong Kim, Kei Kubota, Jun Sugiyama, Shinichi Komaba","doi":"10.1039/d5sc03394b","DOIUrl":null,"url":null,"abstract":"Layered oxides (AMO<small><sub>2</sub></small>, where A = Li or Na and M = transition metal) are essential positive electrode materials for lithium- and sodium-ion batteries. A fundamental question in ion transport is whether Li<small><sup>+</sup></small> or Na<small><sup>+</sup></small> diffuses faster in these materials; however, distinguishing intrinsic diffusion properties from the effects of particle size and electrode composition is challenging. Using <em>operando</em> muon spin spectroscopy and molecular dynamics simulations, we determined the Li<small><sup>+</sup></small> and Na<small><sup>+</sup></small> self-diffusion coefficients in O3-Li<small><sub><em>x</em></sub></small>CoO<small><sub>2</sub></small>, O3-Na<small><sub><em>x</em></sub></small>CoO<small><sub>2</sub></small>, and P2-Na<small><sub><em>x</em></sub></small>CoO<small><sub>2</sub></small>. Our findings revealed that Na<small><sup>+</sup></small> diffusion is higher in the P2-type structure than in the O3-type structure primarily due to weaker electrostatic interactions. In the O3-type structure, Li<small><sup>+</sup></small> diffuses faster than Na<small><sup>+</sup></small>, whose larger ionic size hinders mobility. These insights clarify the ion transport mechanisms and advance the design of next-generation battery materials.","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":"31 1","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5sc03394b","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Layered oxides (AMO2, where A = Li or Na and M = transition metal) are essential positive electrode materials for lithium- and sodium-ion batteries. A fundamental question in ion transport is whether Li+ or Na+ diffuses faster in these materials; however, distinguishing intrinsic diffusion properties from the effects of particle size and electrode composition is challenging. Using operando muon spin spectroscopy and molecular dynamics simulations, we determined the Li+ and Na+ self-diffusion coefficients in O3-LixCoO2, O3-NaxCoO2, and P2-NaxCoO2. Our findings revealed that Na+ diffusion is higher in the P2-type structure than in the O3-type structure primarily due to weaker electrostatic interactions. In the O3-type structure, Li+ diffuses faster than Na+, whose larger ionic size hinders mobility. These insights clarify the ion transport mechanisms and advance the design of next-generation battery materials.

Abstract Image

再论LixCoO2和NaxCoO2的离子动力学
层状氧化物(AMO2,其中A = Li或Na, M =过渡金属)是锂离子和钠离子电池必不可少的正极材料。离子输运的一个基本问题是Li+和Na+在这些材料中扩散得更快;然而,从颗粒大小和电极组成的影响中区分本然扩散特性是具有挑战性的。利用操作子自旋光谱和分子动力学模拟,测定了O3-LixCoO2、O3-NaxCoO2和P2-NaxCoO2中Li+和Na+的自扩散系数。我们的研究结果表明,在p2型结构中Na+的扩散比在o3型结构中更高,这主要是由于较弱的静电相互作用。在o3型结构中,Li+的扩散速度比Na+快,而Na+的离子尺寸较大阻碍了迁移率。这些见解阐明了离子传输机制,并推动了下一代电池材料的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Science
Chemical Science CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
14.40
自引率
4.80%
发文量
1352
审稿时长
2.1 months
期刊介绍: Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信