PERSISTENT MAYER HOMOLOGY AND PERSISTENT MAYER LAPLACIAN.

IF 1.4 Q2 MATHEMATICS, APPLIED
Li Shen, Jian Liu, Guo-Wei Wei
{"title":"PERSISTENT MAYER HOMOLOGY AND PERSISTENT MAYER LAPLACIAN.","authors":"Li Shen, Jian Liu, Guo-Wei Wei","doi":"10.3934/fods.2024032","DOIUrl":null,"url":null,"abstract":"<p><p>In algebraic topology, the differential (i.e., boundary operator) typically satisfies <math> <msup><mrow><mi>d</mi></mrow> <mrow><mn>2</mn></mrow> </msup> <mo>=</mo> <mn>0</mn></math> . However, the generalized differential <math> <msup><mrow><mi>d</mi></mrow> <mrow><mi>N</mi></mrow> </msup> <mo>=</mo> <mn>0</mn></math> for an integer <math><mi>N</mi> <mo>≥</mo> <mn>2</mn></math> has been studied in terms of Mayer homology on <math><mi>N</mi></math> -chain complexes for more than eighty years. We introduce Mayer Laplacians on <math><mi>N</mi></math> -chain complexes. We show that both Mayer homology and Mayer Laplacians offer considerable application potential, providing topological and geometric insights to spaces. We also introduce persistent Mayer homology and persistent Mayer Laplacians at various <math><mi>N</mi></math> . The bottleneck distance and stability of persistence diagrams associated with Mayer homology are investigated. Our computational experiments indicate that the topological features offered by persistent Mayer homology and spectrum given by persistent Mayer Laplacians hold substantial promise for large, complex, and diverse data. We envision that the present work serves as an inaugural step towards integrating Mayer homology and Mayer Laplacians into the realm of topological data analysis.</p>","PeriodicalId":73054,"journal":{"name":"Foundations of data science (Springfield, Mo.)","volume":"6 4","pages":"584-612"},"PeriodicalIF":1.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467518/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of data science (Springfield, Mo.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/fods.2024032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In algebraic topology, the differential (i.e., boundary operator) typically satisfies d 2 = 0 . However, the generalized differential d N = 0 for an integer N 2 has been studied in terms of Mayer homology on N -chain complexes for more than eighty years. We introduce Mayer Laplacians on N -chain complexes. We show that both Mayer homology and Mayer Laplacians offer considerable application potential, providing topological and geometric insights to spaces. We also introduce persistent Mayer homology and persistent Mayer Laplacians at various N . The bottleneck distance and stability of persistence diagrams associated with Mayer homology are investigated. Our computational experiments indicate that the topological features offered by persistent Mayer homology and spectrum given by persistent Mayer Laplacians hold substantial promise for large, complex, and diverse data. We envision that the present work serves as an inaugural step towards integrating Mayer homology and Mayer Laplacians into the realm of topological data analysis.

持久梅耶同调和持久梅耶拉普拉斯。
在代数拓扑中,微分算子(即边界算子)通常满足d2 = 0。然而,对于整数N≥2的广义微分d N = 0在N链配合物上的Mayer同源性已经研究了80多年。我们在N链配合物上引入了Mayer laplacian。我们证明Mayer同调和Mayer拉普拉斯算子都具有相当大的应用潜力,为空间提供了拓扑和几何的见解。我们还介绍了在不同N点上的持久迈耶同调和持久迈耶拉普拉斯算子。研究了Mayer同调持久性图的瓶颈距离和稳定性。我们的计算实验表明,持久迈耶同调提供的拓扑特征和持久迈耶拉普拉斯算子给出的谱对于大型、复杂和多样化的数据具有很大的前景。我们设想,目前的工作是将迈耶同调和迈耶拉普拉斯算子整合到拓扑数据分析领域的第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信