Active learning of neural population dynamics using two-photon holographic optogenetics.

Andrew Wagenmaker, Lu Mi, Marton Rozsa, Matthew S Bull, Karel Svoboda, Kayvon Daie, Matthew D Golub, Kevin Jamieson
{"title":"Active learning of neural population dynamics using two-photon holographic optogenetics.","authors":"Andrew Wagenmaker, Lu Mi, Marton Rozsa, Matthew S Bull, Karel Svoboda, Kayvon Daie, Matthew D Golub, Kevin Jamieson","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advances in techniques for monitoring and perturbing neural populations have greatly enhanced our ability to study circuits in the brain. In particular, two-photon holographic optogenetics now enables precise photostimulation of experimenter-specified groups of individual neurons, while simultaneous two-photon calcium imaging enables the measurement of ongoing and induced activity across the neural population. Despite the enormous space of potential photostimulation patterns and the time-consuming nature of photostimulation experiments, very little algorithmic work has been done to determine the most effective photostimulation patterns for identifying the neural population dynamics. Here, we develop methods to efficiently select which neurons to stimulate such that the resulting neural responses will best inform a dynamical model of the neural population activity. Using neural population responses to photostimulation in mouse motor cortex, we demonstrate the efficacy of a low-rank linear dynamical systems model, and develop an active learning procedure which takes advantage of low-rank structure to determine informative photostimulation patterns. We demonstrate our approach on both real and synthetic data, obtaining in some cases as much as a two-fold reduction in the amount of data required to reach a given predictive power. Our active stimulation design method is based on a novel active learning procedure for low-rank regression, which may be of independent interest.</p>","PeriodicalId":72099,"journal":{"name":"Advances in neural information processing systems","volume":"37 ","pages":"31659-31687"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12466919/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in neural information processing systems","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advances in techniques for monitoring and perturbing neural populations have greatly enhanced our ability to study circuits in the brain. In particular, two-photon holographic optogenetics now enables precise photostimulation of experimenter-specified groups of individual neurons, while simultaneous two-photon calcium imaging enables the measurement of ongoing and induced activity across the neural population. Despite the enormous space of potential photostimulation patterns and the time-consuming nature of photostimulation experiments, very little algorithmic work has been done to determine the most effective photostimulation patterns for identifying the neural population dynamics. Here, we develop methods to efficiently select which neurons to stimulate such that the resulting neural responses will best inform a dynamical model of the neural population activity. Using neural population responses to photostimulation in mouse motor cortex, we demonstrate the efficacy of a low-rank linear dynamical systems model, and develop an active learning procedure which takes advantage of low-rank structure to determine informative photostimulation patterns. We demonstrate our approach on both real and synthetic data, obtaining in some cases as much as a two-fold reduction in the amount of data required to reach a given predictive power. Our active stimulation design method is based on a novel active learning procedure for low-rank regression, which may be of independent interest.

利用双光子全息光遗传学主动学习神经种群动态。
监测和干扰神经群技术的最新进展大大提高了我们研究大脑回路的能力。特别是,双光子全息光遗传学现在可以对实验者指定的单个神经元群进行精确的光刺激,而同时双光子钙成像可以测量整个神经群正在进行和诱导的活动。尽管潜在的光刺激模式有巨大的空间和光刺激实验的耗时性质,但很少有算法工作已经完成,以确定识别神经种群动态的最有效的光刺激模式。在这里,我们开发的方法来有效地选择哪些神经元来刺激,这样所产生的神经反应将最好地告知神经种群活动的动态模型。利用小鼠运动皮层对光刺激的神经群体反应,我们证明了低秩线性动力系统模型的有效性,并开发了一个利用低秩结构来确定信息光刺激模式的主动学习过程。我们在真实数据和合成数据上展示了我们的方法,在某些情况下,达到给定预测能力所需的数据量减少了两倍。我们的主动刺激设计方法是基于一种新的低秩回归的主动学习过程,这可能是一个独立的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信