Assessment of haematological and biochemical parameters in captive green sea turtles (Chelonia mydas) before release.

IF 2.5 3区 环境科学与生态学 Q2 BIODIVERSITY CONSERVATION
Conservation Physiology Pub Date : 2025-09-25 eCollection Date: 2025-01-01 DOI:10.1093/conphys/coaf069
Rui Guo, Li Zhu, Xiaofei Zhai, Tongliang Wang, Jichao Wang
{"title":"Assessment of haematological and biochemical parameters in captive green sea turtles (<i>Chelonia mydas</i>) before release.","authors":"Rui Guo, Li Zhu, Xiaofei Zhai, Tongliang Wang, Jichao Wang","doi":"10.1093/conphys/coaf069","DOIUrl":null,"url":null,"abstract":"<p><p>The green sea turtle (<i>Chelonia mydas</i>), a globally endangered marine reptile, faces significant population declines due to anthropogenic and environmental pressures. Captive rehabilitation programs are critical for conservation, yet captivity-induced physiological deviations may compromise post-release survival. This study establishes haematological and biochemical reference intervals for pre-release captive <i>C. mydas</i> (<i>n</i> = 40) various across juvenile, subadult, and adult life stages, and identifies key deviations from wild baselines. We found pronounced captivity-specific alterations, including elevated immature red blood cell counts and ghost cell counts in juveniles, which indicated dysregulated erythropoiesis and oxidative stress. Ontogenetic shifts revealed maladaptive macrocytic erythrocytosis in adults, likely linked to limited exercise and dietary imbalances. Biochemically, captive adults showed hyperproteinemia (total protein, 73.35 g/l) and dyslipidemia (total cholesterol, 8.98 mmol/l triglycerides, 1.53 mmol/l), indicating high-protein, high-fat diets, while hypoglucagonemia (glucose, 2.83 mmol/l) suggested compromised energy reserves. Age-dependent immune activity was observed, with juveniles exhibiting elevated leukocyte counts (19.34 × 10<sup>9</sup>/l), potentially due to chronic stress. These findings underscore metabolic and haematological adaptations in captivity that may hinder post-release resilience. Key biomarkers, such as immature red cell count, glucose, and lipid profiles, should guide release readiness assessments, thus ensuring rehabilitated turtles are physiologically primed for survival. This study provides a critical framework for enhancing the efficacy of sea turtle conservation translocations.</p>","PeriodicalId":54331,"journal":{"name":"Conservation Physiology","volume":"13 1","pages":"coaf069"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12463467/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conservation Physiology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/conphys/coaf069","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

Abstract

The green sea turtle (Chelonia mydas), a globally endangered marine reptile, faces significant population declines due to anthropogenic and environmental pressures. Captive rehabilitation programs are critical for conservation, yet captivity-induced physiological deviations may compromise post-release survival. This study establishes haematological and biochemical reference intervals for pre-release captive C. mydas (n = 40) various across juvenile, subadult, and adult life stages, and identifies key deviations from wild baselines. We found pronounced captivity-specific alterations, including elevated immature red blood cell counts and ghost cell counts in juveniles, which indicated dysregulated erythropoiesis and oxidative stress. Ontogenetic shifts revealed maladaptive macrocytic erythrocytosis in adults, likely linked to limited exercise and dietary imbalances. Biochemically, captive adults showed hyperproteinemia (total protein, 73.35 g/l) and dyslipidemia (total cholesterol, 8.98 mmol/l triglycerides, 1.53 mmol/l), indicating high-protein, high-fat diets, while hypoglucagonemia (glucose, 2.83 mmol/l) suggested compromised energy reserves. Age-dependent immune activity was observed, with juveniles exhibiting elevated leukocyte counts (19.34 × 109/l), potentially due to chronic stress. These findings underscore metabolic and haematological adaptations in captivity that may hinder post-release resilience. Key biomarkers, such as immature red cell count, glucose, and lipid profiles, should guide release readiness assessments, thus ensuring rehabilitated turtles are physiologically primed for survival. This study provides a critical framework for enhancing the efficacy of sea turtle conservation translocations.

圈养绿海龟放生前的血液学和生化指标评估。
绿海龟(Chelonia mydas)是一种全球濒危的海洋爬行动物,由于人为和环境的压力,其数量正面临着显著的下降。圈养动物康复计划对动物保护至关重要,但圈养引起的生理偏差可能会影响释放后的生存。本研究建立了预释放的mydas (n = 40)在幼年、亚成虫和成虫生命阶段的血液学和生化参考区间,并确定了与野生基线的关键偏差。我们发现明显的圈养特异性改变,包括幼鱼未成熟红细胞计数和鬼影细胞计数升高,这表明红细胞生成和氧化应激失调。个体发生的变化揭示了成人的适应性大红细胞增多症,可能与有限的运动和饮食不平衡有关。生物化学方面,圈养成虫表现为高蛋白血症(总蛋白73.35 g/l)和血脂异常(总胆固醇8.98 mmol/l甘油三酯1.53 mmol/l),提示高蛋白、高脂肪饮食,而低胰高血糖素血症(葡萄糖2.83 mmol/l)提示能量储备降低。观察到年龄依赖性免疫活性,幼鱼表现出白细胞计数升高(19.34 × 109/l),可能是由于慢性应激。这些发现强调了圈养中代谢和血液学的适应可能会阻碍释放后的恢复能力。关键的生物标志物,如未成熟红细胞计数、葡萄糖和脂质谱,应该指导释放准备评估,从而确保康复的海龟在生理上为生存做好准备。本研究为提高海龟保护易位的有效性提供了一个重要的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Conservation Physiology
Conservation Physiology Environmental Science-Management, Monitoring, Policy and Law
CiteScore
5.10
自引率
3.70%
发文量
71
审稿时长
11 weeks
期刊介绍: Conservation Physiology is an online only, fully open access journal published on behalf of the Society for Experimental Biology. Biodiversity across the globe faces a growing number of threats associated with human activities. Conservation Physiology will publish research on all taxa (microbes, plants and animals) focused on understanding and predicting how organisms, populations, ecosystems and natural resources respond to environmental change and stressors. Physiology is considered in the broadest possible terms to include functional and mechanistic responses at all scales. We also welcome research towards developing and refining strategies to rebuild populations, restore ecosystems, inform conservation policy, and manage living resources. We define conservation physiology broadly and encourage potential authors to contact the editorial team if they have any questions regarding the remit of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信