The effect of pediatric chest CT examinations on lens exposure: a Monte Carlo simulation study.

IF 1.5 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Takanori Masuda, Yasushi Katsunuma, Masao Kiguchi, Chikako Fujioka, Takayuki Oku, Toru Ishibashi, Takayasu Yoshitake, Shuji Abe, Kazuo Awai
{"title":"The effect of pediatric chest CT examinations on lens exposure: a Monte Carlo simulation study.","authors":"Takanori Masuda, Yasushi Katsunuma, Masao Kiguchi, Chikako Fujioka, Takayuki Oku, Toru Ishibashi, Takayasu Yoshitake, Shuji Abe, Kazuo Awai","doi":"10.1007/s12194-025-00971-6","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of the study was to evaluate the degree of error between Monte Carlo simulations of pediatric lens dose outside the scan range and measured values obtained with a dosimeter. Two types of computed tomography (CT) equipment and three pediatric anthropomorphic phantoms were used, each with a nanoDot optically stimulated luminescence dosimeter (nanoDot OSLD; Landauer, Inc., Glenwood, IL, USA) mounted on its left and right lenses. The scatter dose measurements obtained from the nanoDot were compared with those predicted by the particle and heavy ion transport code system, which served as a Monte Carlo simulation tool during pediatric chest CT examinations. The error rate between the mean measured dose and the simulated dose was within 1.5% for Aquilion Genesis and within 8.0% for Revolution. We evaluated the degree of error between Monte Carlo simulations of pediatric lens dose outside the scan range and measured values obtained with a dosimeter. The Monte Carlo simulations tended to underestimate the error.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-025-00971-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of the study was to evaluate the degree of error between Monte Carlo simulations of pediatric lens dose outside the scan range and measured values obtained with a dosimeter. Two types of computed tomography (CT) equipment and three pediatric anthropomorphic phantoms were used, each with a nanoDot optically stimulated luminescence dosimeter (nanoDot OSLD; Landauer, Inc., Glenwood, IL, USA) mounted on its left and right lenses. The scatter dose measurements obtained from the nanoDot were compared with those predicted by the particle and heavy ion transport code system, which served as a Monte Carlo simulation tool during pediatric chest CT examinations. The error rate between the mean measured dose and the simulated dose was within 1.5% for Aquilion Genesis and within 8.0% for Revolution. We evaluated the degree of error between Monte Carlo simulations of pediatric lens dose outside the scan range and measured values obtained with a dosimeter. The Monte Carlo simulations tended to underestimate the error.

儿童胸部CT检查对晶状体暴露的影响:蒙特卡罗模拟研究。
本研究的目的是评估蒙特卡罗模拟的儿童晶状体在扫描范围外的剂量与剂量计测量值之间的误差程度。使用了两种类型的计算机断层扫描(CT)设备和三个儿童仿人模型,每一个都在其左右透镜上安装了一个nanoDot光刺激发光剂量计(nanoDot OSLD; Landauer, Inc., Glenwood, IL, USA)。将nanoDot获得的散射剂量测量值与粒子和重离子传输编码系统预测的剂量进行比较,该系统在儿童胸部CT检查中作为蒙特卡罗模拟工具。Aquilion Genesis的平均测量剂量与模拟剂量的误差率在1.5%以内,Revolution的误差率在8.0%以内。我们评估了扫描范围外儿童晶状体剂量的蒙特卡罗模拟与剂量计测量值之间的误差程度。蒙特卡罗模拟往往低估了误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Radiological Physics and Technology
Radiological Physics and Technology RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
3.00
自引率
12.50%
发文量
40
期刊介绍: The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信