A projection-based inverse kinematic model for extensible continuum robots and hyper-redundant robots with an elbow joint.

IF 3 Q2 ROBOTICS
Frontiers in Robotics and AI Pub Date : 2025-09-12 eCollection Date: 2025-01-01 DOI:10.3389/frobt.2025.1627688
Sven Fritsch, Dirk Oberschmidt
{"title":"A projection-based inverse kinematic model for extensible continuum robots and hyper-redundant robots with an elbow joint.","authors":"Sven Fritsch, Dirk Oberschmidt","doi":"10.3389/frobt.2025.1627688","DOIUrl":null,"url":null,"abstract":"<p><p>Inverse kinematics is a core problem in robotics, involving the use of kinematic equations to calculate the joint configurations required to achieve a target pose. This study introduces a novel inverse kinematic model (IKM) for extensible (i.e., length-adjustable) continuum robots (CRs) and hyper-redundant robots (HRRs) featuring an elbow joint. This IKM numerically solves a set of equations representing geometric constraints (abbreviated as NSGC). NSGC can handle target poses <math> <mrow> <msub><mrow><mi>X</mi></mrow> <mrow><mi>t</mi></mrow> </msub> <mo>=</mo> <mrow><mo>[</mo> <mrow> <msub><mrow><mi>x</mi></mrow> <mrow><mi>t</mi></mrow> </msub> <mo>,</mo> <msub><mrow><mi>y</mi></mrow> <mrow><mi>t</mi></mrow> </msub> <mo>,</mo> <msub><mrow><mi>z</mi></mrow> <mrow><mi>t</mi></mrow> </msub> <mo>,</mo> <msub><mrow><mi>ψ</mi></mrow> <mrow><mi>t</mi></mrow> </msub> </mrow> <mo>]</mo></mrow> </mrow> </math> in 3D space, which are projected onto a 2D plane and solved numerically. NSGC is capable of real-time operation and accounts for elbow joint limits. Extensive simulations and empirical tests confirm the reliability, performance, and practical applicability of NSGC.</p>","PeriodicalId":47597,"journal":{"name":"Frontiers in Robotics and AI","volume":"12 ","pages":"1627688"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12464886/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Robotics and AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frobt.2025.1627688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Inverse kinematics is a core problem in robotics, involving the use of kinematic equations to calculate the joint configurations required to achieve a target pose. This study introduces a novel inverse kinematic model (IKM) for extensible (i.e., length-adjustable) continuum robots (CRs) and hyper-redundant robots (HRRs) featuring an elbow joint. This IKM numerically solves a set of equations representing geometric constraints (abbreviated as NSGC). NSGC can handle target poses X t = [ x t , y t , z t , ψ t ] in 3D space, which are projected onto a 2D plane and solved numerically. NSGC is capable of real-time operation and accounts for elbow joint limits. Extensive simulations and empirical tests confirm the reliability, performance, and practical applicability of NSGC.

基于投影的可扩展连续体机器人和带肘关节的超冗余度机器人运动学逆模型。
逆运动学是机器人技术中的一个核心问题,涉及到使用运动学方程来计算实现目标姿态所需的关节构型。本研究为具有肘关节的可扩展(即长度可调节)连续体机器人(cr)和超冗余机器人(HRRs)引入了一种新的逆运动学模型(IKM)。该IKM以数值方式求解一组表示几何约束(简称NSGC)的方程。NSGC可以处理三维空间中的目标姿态X t = [X t, y t, z t, ψ t],并将其投影到二维平面上进行数值求解。NSGC能够实时操作,并考虑肘关节极限。大量的仿真和经验试验证实了NSGC的可靠性、性能和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
5.90%
发文量
355
审稿时长
14 weeks
期刊介绍: Frontiers in Robotics and AI publishes rigorously peer-reviewed research covering all theory and applications of robotics, technology, and artificial intelligence, from biomedical to space robotics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信