Benjamin Ackerman, Ryan W Gan, Youyi Zhang, Juned Siddique, James Roose, Jennifer L Lund, Janick Weberpals, Jocelyn R Wang, Craig S Meyer, Jennifer Hayden, Khaled Sarsour, Ashita S Batavia
{"title":"Regression calibration for time-to-event outcomes: mitigating bias due to measurement error in real-world endpoints.","authors":"Benjamin Ackerman, Ryan W Gan, Youyi Zhang, Juned Siddique, James Roose, Jennifer L Lund, Janick Weberpals, Jocelyn R Wang, Craig S Meyer, Jennifer Hayden, Khaled Sarsour, Ashita S Batavia","doi":"10.1515/em-2025-0009","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>In drug development, there is increasing interest in leveraging real-world data (RWD) to augment trial data and generate evidence about treatment efficacy. However, comparing patient outcomes across trial and routine clinical care settings can be susceptible to bias, namely due to differences in how and when disease assessments occur. This can introduce measurement error in RWD relative to trial standards and lead to bias when comparing endpoints. We develop a novel statistical method, survival regression calibration (SRC), to mitigate measurement error bias in time-to-event RWD outcomes and improve inferences when combining trials with RWD in oncology.</p><p><strong>Methods: </strong>SRC extends upon existing regression calibration methods to address measurement error in time-to-event RWD outcomes. The method entails fitting separate Weibull regression models using trial-like ('true') and real-world-like ('mismeasured') outcome measures in a validation sample, and then calibrating parameter estimates in the full study according to the estimated bias in Weibull parameters. We evaluate performance of SRC under varying degrees of existing measurement error bias via simulation, and then illustrate how SRC can address measurement error when estimating median progression-free survival (mPFS) in newly diagnosed multiple myeloma RWD.</p><p><strong>Results: </strong>When measurement error exists between trial and real-world mPFS, SRC can effectively account for its resulting bias. SRC yields greater reduction in measurement error bias than standard regression calibration methods, due to its suitability for time-to-event outcomes.</p><p><strong>Conclusions: </strong>Outcome measurement error is important to address when combining trials and RWD, as it may lead to biased results. Our SRC method helps mitigate such bias, improving comparability between real-world and trial endpoints and strengthening evidence of treatment efficacy.</p>","PeriodicalId":37999,"journal":{"name":"Epidemiologic Methods","volume":"14 1","pages":"20250009"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12464481/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemiologic Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/em-2025-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: In drug development, there is increasing interest in leveraging real-world data (RWD) to augment trial data and generate evidence about treatment efficacy. However, comparing patient outcomes across trial and routine clinical care settings can be susceptible to bias, namely due to differences in how and when disease assessments occur. This can introduce measurement error in RWD relative to trial standards and lead to bias when comparing endpoints. We develop a novel statistical method, survival regression calibration (SRC), to mitigate measurement error bias in time-to-event RWD outcomes and improve inferences when combining trials with RWD in oncology.
Methods: SRC extends upon existing regression calibration methods to address measurement error in time-to-event RWD outcomes. The method entails fitting separate Weibull regression models using trial-like ('true') and real-world-like ('mismeasured') outcome measures in a validation sample, and then calibrating parameter estimates in the full study according to the estimated bias in Weibull parameters. We evaluate performance of SRC under varying degrees of existing measurement error bias via simulation, and then illustrate how SRC can address measurement error when estimating median progression-free survival (mPFS) in newly diagnosed multiple myeloma RWD.
Results: When measurement error exists between trial and real-world mPFS, SRC can effectively account for its resulting bias. SRC yields greater reduction in measurement error bias than standard regression calibration methods, due to its suitability for time-to-event outcomes.
Conclusions: Outcome measurement error is important to address when combining trials and RWD, as it may lead to biased results. Our SRC method helps mitigate such bias, improving comparability between real-world and trial endpoints and strengthening evidence of treatment efficacy.
期刊介绍:
Epidemiologic Methods (EM) seeks contributions comparable to those of the leading epidemiologic journals, but also invites papers that may be more technical or of greater length than what has traditionally been allowed by journals in epidemiology. Applications and examples with real data to illustrate methodology are strongly encouraged but not required. Topics. genetic epidemiology, infectious disease, pharmaco-epidemiology, ecologic studies, environmental exposures, screening, surveillance, social networks, comparative effectiveness, statistical modeling, causal inference, measurement error, study design, meta-analysis