Nadine Linhares, Marco Aurelio Teófilo, Juliane Fernandes, Maria Jennifer Bernardino, Rachel Solidonio, Vanessa Sousa, Gisele Barreto, Everton da Silva, Ariana Maria Soares, Sthefane Feitosa, Denis Gonçalves, Delane Gondim, Renata Leitão, Mirna Marques, Paula Goes
{"title":"Blockage of P2X7 receptor activation attenuated bone loss in ligature-induced model of periodontitis in rats.","authors":"Nadine Linhares, Marco Aurelio Teófilo, Juliane Fernandes, Maria Jennifer Bernardino, Rachel Solidonio, Vanessa Sousa, Gisele Barreto, Everton da Silva, Ariana Maria Soares, Sthefane Feitosa, Denis Gonçalves, Delane Gondim, Renata Leitão, Mirna Marques, Paula Goes","doi":"10.1007/s11302-025-10112-8","DOIUrl":null,"url":null,"abstract":"<p><p>Periodontitis is a highly prevalent immunoinflammatory disease that compromises the supporting tissues of the teeth, especially the periodontal ligament and alveolar bone. During disease progression, inflammatory responses lead to the release of ATP, which interacts with purinergic receptors such as P2X7R, potentially influencing bone remodeling. Although P2X7R has been studied in bone cells, its specific role in periodontitis remains poorly characterized. This study aimed to evaluate the effects of P2X7R modulation on osteoblastic activity and experimental bone loss. In vitro, P2X7R expression was confirmed in OFCOL II osteoblastic cells. Receptor activation using BzATP significantly reduced cell viability, altered cell morphology, and decreased alkaline phosphatase (ALP) activity (p < 0.05). In vivo, periodontitis was induced in Wistar rats via ligature. Animals were allocated into four groups: (1) Naïve; (2) Periodontitis (saline-treated); (3) BzATP-treated (P2X7R agonist); and (4) BBG-treated (P2X7R antagonist). BzATP aggravated periodontal damage, with increased inflammation, loss of osteoblasts, and disorganization of periodontal ligament fibers. In contrast, BBG improved tissue architecture, reduced inflammatory infiltrate, and increased osteoblast numbers and ALP activity, possibly via the Wnt signaling pathway. These results suggest that P2X7R activation contributes to inflammation-driven bone loss, impairing osteoblast viability and function. Therefore, P2X7R inhibition may serve as a promising pharmacological strategy to preserve bone and periodontal integrity in the context of periodontitis.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Purinergic Signalling","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11302-025-10112-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Periodontitis is a highly prevalent immunoinflammatory disease that compromises the supporting tissues of the teeth, especially the periodontal ligament and alveolar bone. During disease progression, inflammatory responses lead to the release of ATP, which interacts with purinergic receptors such as P2X7R, potentially influencing bone remodeling. Although P2X7R has been studied in bone cells, its specific role in periodontitis remains poorly characterized. This study aimed to evaluate the effects of P2X7R modulation on osteoblastic activity and experimental bone loss. In vitro, P2X7R expression was confirmed in OFCOL II osteoblastic cells. Receptor activation using BzATP significantly reduced cell viability, altered cell morphology, and decreased alkaline phosphatase (ALP) activity (p < 0.05). In vivo, periodontitis was induced in Wistar rats via ligature. Animals were allocated into four groups: (1) Naïve; (2) Periodontitis (saline-treated); (3) BzATP-treated (P2X7R agonist); and (4) BBG-treated (P2X7R antagonist). BzATP aggravated periodontal damage, with increased inflammation, loss of osteoblasts, and disorganization of periodontal ligament fibers. In contrast, BBG improved tissue architecture, reduced inflammatory infiltrate, and increased osteoblast numbers and ALP activity, possibly via the Wnt signaling pathway. These results suggest that P2X7R activation contributes to inflammation-driven bone loss, impairing osteoblast viability and function. Therefore, P2X7R inhibition may serve as a promising pharmacological strategy to preserve bone and periodontal integrity in the context of periodontitis.
期刊介绍:
Nucleotides and nucleosides are primitive biological molecules that were utilized early in evolution both as intracellular energy sources and as extracellular signalling molecules. ATP was first identified as a neurotransmitter and later as a co-transmitter with all the established neurotransmitters in both peripheral and central nervous systems. Four subtypes of P1 (adenosine) receptors, 7 subtypes of P2X ion channel receptors and 8 subtypes of P2Y G protein-coupled receptors have currently been identified. Since P2 receptors were first cloned in the early 1990’s, there is clear evidence for the widespread distribution of both P1 and P2 receptor subtypes in neuronal and non-neuronal cells, including glial, immune, bone, muscle, endothelial, epithelial and endocrine cells.