Loss of E-Cadherin Alters Cigarette Smoke Extract (CSE)-Induced Damage and Repair Responses in Human Airway Epithelial Cells; Implications for Chronic Obstructive Pulmonary Disease (COPD).
Xinzi Zheng, Kingsley Okechukwu Nwozor, Marnix Jonker, Marissa Wisman, Martijn C Nawijn, Irene H Heijink
{"title":"Loss of E-Cadherin Alters Cigarette Smoke Extract (CSE)-Induced Damage and Repair Responses in Human Airway Epithelial Cells; Implications for Chronic Obstructive Pulmonary Disease (COPD).","authors":"Xinzi Zheng, Kingsley Okechukwu Nwozor, Marnix Jonker, Marissa Wisman, Martijn C Nawijn, Irene H Heijink","doi":"10.1080/10985549.2025.2560946","DOIUrl":null,"url":null,"abstract":"<p><p>COPD is characterized by airway epithelial barrier dysfunction. We hypothesized that downregulation of E-cadherin results in abnormal responses to cigarette smoke extract (CSE) with impaired repair and increased pro-inflammatory activity. We used CRISPR-Cas9-engineered 16HBE cells with 1-2 copies of the <i>CDH1</i> gene encoding E-cadherin (<i>CDH1</i><sup>+/+</sup> or <i>CDH1</i><sup>+/-</sup>) to study effects on tight junctional protein zonula occludens (ZO-1), CSE-induced epithelial barrier dysfunction using electric cell-substrate impedance sensing and pro-inflammatory cytokine production. In airway epithelial cells (AECs) from nine COPD stage IV transplant lungs and tracheobronchial tissue of nine non-COPD donors, we assessed E-cadherin, ZO-1 and pro-inflammatory cytokines. Lower electrical resistance in <i>CDH1</i><sup>+/-</sup> 16HBE cells was accompanied by ZO-1 delocalization. CSE exposure induced transient barrier dysfunction, from which <i>CDH1</i><sup>+/-</sup> cells recovered more slowly than <i>CDH1+/+</i> cells. Similarly, <i>CDH1</i><sup>+/-</sup> cells showed a delayed repair response upon wounding, while gene expression and secretion of pro-inflammatory cytokines were higher in unexposed cells (CXCL8, IL-1α) and/or showed a stronger CSE-induced increase (IL-1α, GM-CSF). AECs from COPD patients displayed lower E-cadherin and TJP1 levels and higher CSE-induced <i>IL1A</i> expression compared to control. Downregulation of E-cadherin resulted in disrupted ZO-1 expression, aggravated CSE-induced barrier dysfunction, impaired recovery from injury and a more pro-inflammatory epithelial phenotype in 16HBE cells.</p>","PeriodicalId":18658,"journal":{"name":"Molecular and Cellular Biology","volume":" ","pages":"1-14"},"PeriodicalIF":2.7000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10985549.2025.2560946","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
COPD is characterized by airway epithelial barrier dysfunction. We hypothesized that downregulation of E-cadherin results in abnormal responses to cigarette smoke extract (CSE) with impaired repair and increased pro-inflammatory activity. We used CRISPR-Cas9-engineered 16HBE cells with 1-2 copies of the CDH1 gene encoding E-cadherin (CDH1+/+ or CDH1+/-) to study effects on tight junctional protein zonula occludens (ZO-1), CSE-induced epithelial barrier dysfunction using electric cell-substrate impedance sensing and pro-inflammatory cytokine production. In airway epithelial cells (AECs) from nine COPD stage IV transplant lungs and tracheobronchial tissue of nine non-COPD donors, we assessed E-cadherin, ZO-1 and pro-inflammatory cytokines. Lower electrical resistance in CDH1+/- 16HBE cells was accompanied by ZO-1 delocalization. CSE exposure induced transient barrier dysfunction, from which CDH1+/- cells recovered more slowly than CDH1+/+ cells. Similarly, CDH1+/- cells showed a delayed repair response upon wounding, while gene expression and secretion of pro-inflammatory cytokines were higher in unexposed cells (CXCL8, IL-1α) and/or showed a stronger CSE-induced increase (IL-1α, GM-CSF). AECs from COPD patients displayed lower E-cadherin and TJP1 levels and higher CSE-induced IL1A expression compared to control. Downregulation of E-cadherin resulted in disrupted ZO-1 expression, aggravated CSE-induced barrier dysfunction, impaired recovery from injury and a more pro-inflammatory epithelial phenotype in 16HBE cells.
期刊介绍:
Molecular and Cellular Biology (MCB) showcases significant discoveries in cellular morphology and function, genome organization, regulation of genetic expression, morphogenesis, and somatic cell genetics. The journal also examines viral systems, publishing papers that emphasize their impact on the cell.