Persistent Topological Laplacians-A Survey.

IF 2.2 3区 数学 Q1 MATHEMATICS
Mathematics Pub Date : 2025-01-02 Epub Date: 2025-01-09 DOI:10.3390/math13020208
Xiaoqi Wei, Guo-Wei Wei
{"title":"Persistent Topological Laplacians-A Survey.","authors":"Xiaoqi Wei, Guo-Wei Wei","doi":"10.3390/math13020208","DOIUrl":null,"url":null,"abstract":"<p><p>Persistent topological Laplacians constitute a new class of tools in topological data analysis (TDA). They are motivated by the necessity to address challenges encountered in persistent homology when handling complex data. These Laplacians combine multiscale analysis with topological techniques to characterize the topological and geometrical features of functions and data. Their kernels fully retrieve the topological invariants of corresponding persistent homology, while their non-harmonic spectra provide supplementary information. Persistent topological Laplacians have demonstrated superior performance over persistent homology in the analysis of large-scale protein engineering datasets. In this survey, we offer a pedagogical review of persistent topological Laplacians formulated in various mathematical settings, including simplicial complexes, path complexes, flag complexes, digraphs, hypergraphs, hyperdigraphs, cellular sheaves, and <math><mi>N</mi></math> -chain complexes.</p>","PeriodicalId":18303,"journal":{"name":"Mathematics","volume":"13 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467289/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/math13020208","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Persistent topological Laplacians constitute a new class of tools in topological data analysis (TDA). They are motivated by the necessity to address challenges encountered in persistent homology when handling complex data. These Laplacians combine multiscale analysis with topological techniques to characterize the topological and geometrical features of functions and data. Their kernels fully retrieve the topological invariants of corresponding persistent homology, while their non-harmonic spectra provide supplementary information. Persistent topological Laplacians have demonstrated superior performance over persistent homology in the analysis of large-scale protein engineering datasets. In this survey, we offer a pedagogical review of persistent topological Laplacians formulated in various mathematical settings, including simplicial complexes, path complexes, flag complexes, digraphs, hypergraphs, hyperdigraphs, cellular sheaves, and N -chain complexes.

Abstract Image

Abstract Image

Abstract Image

持久拓扑拉普拉斯-综述。
持久拓扑拉普拉斯算子构成了拓扑数据分析(TDA)中的一类新工具。他们的动机是在处理复杂数据时需要解决持久同源性中遇到的挑战。这些拉普拉斯学者将多尺度分析与拓扑技术相结合,以表征函数和数据的拓扑和几何特征。它们的核完全检索相应的持久同调的拓扑不变量,而它们的非调和谱提供了补充信息。持久拓扑拉普拉斯在大规模蛋白质工程数据集的分析中表现出优于持久同源的性能。在这项调查中,我们提供了在各种数学设置中表述的持久性拓扑拉普拉斯算子的教学回顾,包括简单复合体、路径复合体、标志复合体、有向图、超图、超向图、细胞束和N链复合体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematics
Mathematics Mathematics-General Mathematics
CiteScore
4.00
自引率
16.70%
发文量
4032
审稿时长
21.9 days
期刊介绍: Mathematics (ISSN 2227-7390) is an international, open access journal which provides an advanced forum for studies related to mathematical sciences. It devotes exclusively to the publication of high-quality reviews, regular research papers and short communications in all areas of pure and applied mathematics. Mathematics also publishes timely and thorough survey articles on current trends, new theoretical techniques, novel ideas and new mathematical tools in different branches of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信