Christina A van Hal, Elmer V Bernstam, Todd R Johnson
{"title":"Review of tools to support Target Trial Emulation.","authors":"Christina A van Hal, Elmer V Bernstam, Todd R Johnson","doi":"10.1016/j.jbi.2025.104897","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Randomized Controlled Trials (RCTs) are the gold standard for clinical evidence, but ethical and practical constraints sometimes necessitate or warrant the use of observational data. The aim of this study is to identify informatics tools that support the design and conduct of Target Trial Emulations (TTEs), a framework for designing observationl studies that closely emulate RCTs so as to minimize biases that often arise when using real-world evidence (RWE) to estimate causal effects.</p><p><strong>Methods: </strong>We divided the process of conducting TTEs into three phases and seven steps. We then systematically reviewed the literature to identify currently available tools that support one or more of the seven steps required to conduct a TTE. For each tool, we noted which step or steps the tool supports.</p><p><strong>Results: </strong>7,625 papers were included in the initial review, with 76 meeting our inclusion criteria. Our review identified 24 distinct tools applicable to the three phases of TTE. Specifically, 3 tools support the Design Phase, 5 support the Implementation Phase, and 19 support the Analysis Phase, with some tools applicable to multiple phases.</p><p><strong>Conclusion: </strong>This review revealed significant gaps in tool support for the Design Phase of TTEs, while support for the Implementation and Analysis phases was highly variable. No single tool currently supports all aspects of TTEs from start to finish and few tools are interoperable, meaning they cannot be easily integrated into a unified workflow. The results highlight the need for further development of informatics tools for supporting TTEs.</p>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":" ","pages":"104897"},"PeriodicalIF":4.5000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jbi.2025.104897","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Randomized Controlled Trials (RCTs) are the gold standard for clinical evidence, but ethical and practical constraints sometimes necessitate or warrant the use of observational data. The aim of this study is to identify informatics tools that support the design and conduct of Target Trial Emulations (TTEs), a framework for designing observationl studies that closely emulate RCTs so as to minimize biases that often arise when using real-world evidence (RWE) to estimate causal effects.
Methods: We divided the process of conducting TTEs into three phases and seven steps. We then systematically reviewed the literature to identify currently available tools that support one or more of the seven steps required to conduct a TTE. For each tool, we noted which step or steps the tool supports.
Results: 7,625 papers were included in the initial review, with 76 meeting our inclusion criteria. Our review identified 24 distinct tools applicable to the three phases of TTE. Specifically, 3 tools support the Design Phase, 5 support the Implementation Phase, and 19 support the Analysis Phase, with some tools applicable to multiple phases.
Conclusion: This review revealed significant gaps in tool support for the Design Phase of TTEs, while support for the Implementation and Analysis phases was highly variable. No single tool currently supports all aspects of TTEs from start to finish and few tools are interoperable, meaning they cannot be easily integrated into a unified workflow. The results highlight the need for further development of informatics tools for supporting TTEs.
期刊介绍:
The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.